Skip to main content
Log in

Limb, tooth, beak: Three modes of development and evolutionary innovation of form

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The standard model of evolutionary change of form, deriving from Darwin’s theory via the Modern Synthesis, assumes a gradualistic reshaping of anatomical structures, with major changes only occurring by many cycles of natural selection for marginal adaptive advantage. This model, with its assertion that a single mechanism underlies both micro- and macroevolutionary change, contains an implicit notion of development which is only applicable in some cases. Here we compare the embryological processes that shape the vertebrate limb bud, the mammalian tooth and the avian beak. The implied notion of development in the standard evolutionary picture is met only in the case of the vertebrate limb, a single-primordium organ with morphostatic shaping, in which cells rearrange in response to signalling centres which are essentially unchanged by cell movement. In the case of the tooth, a single-primordium organ with morphodynamic shaping in which the strengths and relationships between signalling centres is influenced by the cell and tissue movements they induce, and the beak, in which the final form is influenced by the collision and rearrangement of multiple tissue primordia, abrupt appearance of qualitatively different forms (i.e. morphological novelties) can occur with small changes in system parameters induced by a genetic change, or by an environmental factor whose effects can be subsequently canalized genetically. Bringing developmental mechanisms and, specifically, the material properties of tissues as excitable media into the evolutionary picture, demonstrates that gradualistic change for incremental adaptive advantage is only one of the possible modes of morphological evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. We emphasize that our limb example only pertains to the shaping of the bud before the skeleton differentiates, a developmental episode in every tetrapod embryo. The skeleton itself is, of course, a set of discrete elements that emerge in a partly discontinuous fashion. Subtle changes in limb bud shape, as well as in the functioning of molecules directly involved in its formation, as described above, can have sharply divergent effects on the skeletal pattern. Specifically, due to the properties of its underlying Turing-type patterning mechanism (Turing 1952; Newman and Frisch 1979), the skeleton undergoes discontinuous jumps between numbers and sizes of elements in response to continuous changes in the shape and other parameters of the developing limb bud (Miura et al. 2006; Sheth et al. 2012).

  2. Note that the model of Mallarino et al. (2011) is based on a single primordium, the frontonasal mass, whereas the model of Wu et al. (2006) takes into account the multiprimordium nature of the bird beak. However, the latter model is exclusively based on intrinsic growth patterns of the facial primordia, with no mention of the extrinsic budding interactions in the generation of the beak form.

  3. While the early developmental events would determine the general shape of the upper beak, its adult form will also depend on processes that take place at later ontogenetic stages (patterning and growth of skeletal tissues) or during the juvenile phase (by the active use of the jaw muscles) (Genbrugge et al. 2011). The growth of the rhamphotheca, the sheet of cornified epithelium covering the beak, also influences the adult beak shape (Genbrugge et al. 2012).

  4. There have been exceptions. The late John Maynard Smith, for instance, described himself as ‘open-minded about the possibility that development may impose discontinuous constraints on the pattern of phenotypic variation’, concluding that ‘[i]f so, mutations of large phenotypic effect may sometimes initiate new evolutionary departures’ (Maynard Smith 1983 p 19). Although advanced three decades ago by one of the most highly regarded theorists of the Modern Synthesis, this notion, which may have even greater relevance to the less canalized forms of earlier periods of evolution than to present-day organisms (Newman 2012), has remained marginal to mainstream evolutionary theory.

  5. A recent study of the formation of head crests in pigeons shows this unequivocally to have occurred (Shapiro et al. 2013). Darwin was familiar with such abrupt morphological changes in populations of domesticated pigeons, but considered them ‘sports’ that, by his theory, could not have contributed to the evolution of this trait in the wild (Darwin 1859).

References

  • Abzhanov A, Kuo WP, Hartman C, Grant R, Grant P and Tabin CJ 2006 The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442 563–567

    Article  CAS  PubMed  Google Scholar 

  • Abzhanov A, Protas M, Grant R, Grant P and Tabin CJ 2004 Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305 1462–1465

    Article  CAS  PubMed  Google Scholar 

  • Agarwal DP 2001 Genetic polymorphisms of alcohol metabolizing enzymes. Pathol. Biol. 49 703–709

    Article  CAS  PubMed  Google Scholar 

  • Amundson R 2007 The changing role of the embryo in evolutionary thought (New York: Cambridge University Press)

    Google Scholar 

  • Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, Swoger J and Sharpe J 2010 The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol. 8 e1000420

    Article  PubMed Central  PubMed  Google Scholar 

  • Bouldin CM, Gritli-Linde A, Ahn S and Harfe BD 2010 Shh pathway activation is present and required within the vertebrate limb bud apical ectodermal ridge for normal autopod patterning. PNAS 107 5489–5494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brylski P and Hall BK 1988a Epithelial behaviors and threshold effects in the development and evolution of internal and external cheek pouches in rodents. J. Zool. Syst. Evol. Res. 26 144–154

    Article  Google Scholar 

  • Brylski P and Hall BK 1988b Ontogeny of a macroevolutionary phenotype: the external cheek pouches of geomyoid rodents. Evolution 42 391–395

    Article  Google Scholar 

  • Campàs O, Mallarino R, Herrel A, Abzhanov A and Brenner MP 2010 Scaling and shear transformations capture beak shape variation in Darwin’s finches. PNAS 107 3356–3360

    Article  PubMed Central  PubMed  Google Scholar 

  • Campbell AK, Waud JP and Matthews SB 2005 The molecular basis of lactose intolerance. Sci. Prog. 88 157–202

    Article  CAS  PubMed  Google Scholar 

  • Damon BJ, Mezentseva NV, Kumaratilake JS, Forgacs G and Newman SA 2008 Limb bud and flank mesoderm have distinct ‘physical phenotypes’ that may contribute to limb budding. Dev. Biol. 321 319–330

    Article  CAS  PubMed  Google Scholar 

  • Darwin C 1859 On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life (London: J. Murray)

    Google Scholar 

  • Depew DJ and Weber BH 1996 Darwinism evolving: Systems dynamics and the genealogy of natural selection (Cambridge, MA: MIT Press)

    Google Scholar 

  • Forgacs G and Newman SA 2005 Biological physics of the developing embryo (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  • Genbrugge A, Adriaens D, Kegel B, Brabant L, Hoorebeke L, Podos J, Dirckx J, Aerts P, et al. 2012 Structural tissue organization in the beak of Java and Darwin’s finches. J. Anat. 221 383–393

    Article  PubMed  Google Scholar 

  • Genbrugge A, Heyde AS, Adriaens D, Boone M, Van Hoorebeke L, Dirckx J, Aerts P, Podos J, et al. 2011 Ontogeny of the cranial skeleton in a Darwin’s finch (Geospiza fortis). J. Anat. 219 115–131

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilbert S, Opitz JM and Raff RA 1996 Resynthesizing evolutionary and developmental biology. Dev. Biol. 173 357–372

    Article  CAS  PubMed  Google Scholar 

  • Gould SJ 2002 The structure of evolutionary theory (NY: Harvard University Press)

    Google Scholar 

  • Gould SJ and Lewontin RC 1979 The spandrels of San Marco and the panglossian paradigm: A critique of the adaptationist programme. P. Roy. Soc. Lond. B Bio. Sci. 205 581–598

    Article  CAS  Google Scholar 

  • Gros J, Hu J K-H, Vinegoni C, Feruglio PF, Weissleder R and Tabin CJ 2010 WNT5A/JNK and FGF/MAPK pathways regulate the cellular events shaping the vertebrate limb bud. Curr. Biol. 20 1993–2002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heisenberg CP and Bellaïche Y 2013 Forces in tissue morphogenesis and patterning. Cell 153 948–962

    Article  CAS  PubMed  Google Scholar 

  • Hentschel HG, Glimm T, Glazier JA and Newman SA 2004 Dynamical mechanisms for skeletal pattern formation in the vertebrate limb. P. Roy. Soc. Lond. B Bio. Sci. 271 1713–1722

    Article  CAS  Google Scholar 

  • Hernández-Hernández V, Niklas KJ, Newman SA and Benítez M 2012 Dynamical patterning modules in plant development and evolution. Int. J. Dev. Biol. 56 661–674

    Article  PubMed  Google Scholar 

  • Hopyan S, Sharpe J and Yang Y 2011 Budding behaviors: Growth of the limb as a model of morphogenesis. Dev. Dyn. 240 1054–1062

    Article  PubMed  Google Scholar 

  • Hu D and Marcucio RS 2009 A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development 136 107–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu D, Marcucio RS and Helms JA 2003 A zone of frontonasal ectoderm regulates patterning and growth in the face. Development 130 1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Keller R, Shook D and Skoglund P 2008 The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys. Biol. 5 15007

    Article  Google Scholar 

  • Kosher RA, Savage MP and Chan SC 1979 In vitro studies on the morphogenesis and differentiation of the mesoderm subjacent to the apical ectodermal ridge of the embryonic chick limb-bud. J. Embryol. Exp. Morp. 50 75–97

    CAS  Google Scholar 

  • Krieg M, Arboleda-Estudillo Y, Puech PH, Kafer J, Graner F, Muller DJ and Heisenberg CP 2008 Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10 429–436

    Article  CAS  PubMed  Google Scholar 

  • Laland KN, Odling-Smee J and Gilbert SF 2008 EvoDevo and niche construction: building bridges. J. Exp. Zool. B Mol. Dev. Evol. 310 549–566

    Article  PubMed  Google Scholar 

  • Lenoir T 1987 The eternal laws of form: morphotypes and the conditions of existence in Goethe’s biological thought; in Goethe and the sciences: A re-appraisal (eds) F Amrine, F Zucker and H Wheeler (Dordrecht: Reidel) pp 17–28

    Chapter  Google Scholar 

  • Levine H and Ben-Jacob E 2004 Physical schemata underlying biological pattern formation-examples, issues and strategies. Phys. Biol. 1 14–22

    Article  Google Scholar 

  • Li S, Anderson R, Reginelli AD and Muneoka K 1996 FGF-2 influences cell movements and gene expression during limb development. J. Exp. Zool. Part A 274 234–247

    Article  CAS  Google Scholar 

  • Linde-Medina M 2010a Natural selection and self-organization: a deep dichotomy in the study of organic form. Ludus Vitalis XVIII 25–56

    Google Scholar 

  • Linde-Medina M 2010b Two ‘EvoDevos’. Biol. Theor. 5 7–11

    Article  Google Scholar 

  • Linde-Medina M, Jeyaraman S, Bhat R and Newman SA Bird beak curvature is an emergent feature of facial bud interactions, in preparation

  • Mallarino R, Campàs O, Fritz JA, Burns KJ, Weeks OG, Brenner MP and Abzhanov A 2012 Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. PNAS 109 16222–16227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mallarino R, Grant PR, Grant BR, Herrel A, Kuo WP and Abzhanov A 2011 Two developmental modules establish 3D beak-shape variation in Darwin’s finches. PNAS 108 4057–4062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcon L, Arqués CG, Torres MS and Sharpe J 2011 A computational clonal analysis of the developing mouse limb bud. PLoS Comput. Biol. 7 e1001071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maynard Smith J 1983 The genetics of stasis and punctuation. Annu. Rev. Genet. 17 11–25

    Article  Google Scholar 

  • McGonnell IM, Clarke JDW and Tickle C 1998 Fate map of the developing chick face: Analysis of expansion of facial primordia and establishment of the primary palate. Dev. Dyn. 212 102–118

    Article  CAS  PubMed  Google Scholar 

  • Medio M, Yeh E, Popelut A, Babajko S, Berdal A and Helms J 2012 Wnt/beta-catenin signaling and Msx1 promote outgrowth of the maxillary prominences. Front. Physiol. 3 1–11

    Google Scholar 

  • Meinhardt H and Gierer A 2000 Pattern formation by local self-activation and lateral inhibition. BioEssays 22 753–760

    Article  CAS  PubMed  Google Scholar 

  • Miletich I, Yu WY, Zhang R, Yang K, Caixeta de Andrade S, Pereira SF d, Ohazama A, Mock OB, et al. 2011 Developmental stalling and organ-autonomous regulation of morphogenesis. PNAS 108 19270–19275

    Google Scholar 

  • Miura T, Shiota K, Morriss-Kay G and Maini PK 2006 Mixed-mode pattern in Doublefoot mutant mouse limb--Turing reaction-diffusion model on a growing domain during limb development. J. Theor. Biol. 240 562–573

    Article  PubMed  Google Scholar 

  • Mozzarelli A, Hofrichter J and Eaton WA 1987 Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. Science 237 500–506

    Google Scholar 

  • Müller GB 1990 Developmental mechanisms at the origin of morphological novelty: A side-effect hypothesis; in Evolutionary innovations (ed) M Nitecki (Chicago: University of Chicago Press)

    Google Scholar 

  • Müller GB and Newman SA 2005 The innovation triad: an EvoDevo agenda. J. Exp. Zool. Part B 304 593–609

    Google Scholar 

  • Newman SA 2007 William Bateson’s physicalist ideas; in From embryology to Evo-Devo: A history of evolutionary development (eds) M Laubichler and J Maienschein (Cambridge, MA: MIT Press) pp 83–108

    Google Scholar 

  • Newman SA and Bhat R 2011 Lamarck’s dangerous idea; in Transformations of Lamarckism: from subtle fluids to molecular biology (eds) SB Gissis and E Jablonka (Cambridge, MA: MIT Press) pp 157–169

    Chapter  Google Scholar 

  • Newman SA and Frisch HL 1979 Dynamics of skeletal pattern formation in developing chick limb. Science 205 662–668

    Article  CAS  PubMed  Google Scholar 

  • Newman SA and Müller GB 2000 Epigenetic mechanisms of character origination. J. Exp. Zool. B (Mol. Dev. Evol.) 288 304–317

    Article  CAS  Google Scholar 

  • Newman SA and Müller GB 2005 Genes and form: inherency in the evolution of developmental mechanisms; in Genes in development: re-reading the molecular paradigm (eds) E Neumann-Held and C Rehmann-Sutter (Durham, NC: Duke University Press) pp 38–73

    Google Scholar 

  • Newman SA 2012 Physico-genetic determinants in the evolution of development. Science 338 217–219

    Article  CAS  PubMed  Google Scholar 

  • Newman SA and Linde-Medina M 2013 Physical determinants in the emergence and inheritance of multicellular form. Biol. Theor. doi:10.1007/s13752-013-0116-0

  • Oates AC, Morelli LG and Ares S l 2012 Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139 625–639

    Article  CAS  PubMed  Google Scholar 

  • Peterson T and Müller GB 2013 What is evolutionary novelty? Process vs. character based definitions. J. Exp. Zool. Part B. doi:10.1002/jez.b.22508

  • Rohlf FJ and Marcus LF 1993 A revolution in morphometrics. Trends Ecol. Evol. 8 129–132

    Article  Google Scholar 

  • Russell ES 1916 Form and function (Chicago: Univsity of Chicago Press)

    Google Scholar 

  • Salazar-Ciudad I and Jernvall J 2005 Graduality and innovation in the evolution of complex phenotypes: insights from development. J. Exp. Zool. Part B 304 619–631

    Article  Google Scholar 

  • Salazar-Ciudad I and Jernvall J 2010 A computational model of teeth and the developmental origins of morphological variation. Nature 464 583–586

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I, Jernvall J and Newman SA 2003 Mechanisms of pattern formation in development and evolution. Development 130 2027–2037

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I 2012 Tooth patterning and evolution. Curr. Opin. Genet. Dev. 22 585–592

    Article  CAS  PubMed  Google Scholar 

  • Shapiro MD, Kronenberg Z, Li C, Domyan ET, Pan H, Campbell M, Tan H, Huff CD, et al. 2013 Genomic diversity and evolution of the head crest in the rock pigeon. Science 339 1063–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheth R, Marcon L, Bastida MFL, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, et al. 2012 Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338 1476–1480

    Article  CAS  PubMed  Google Scholar 

  • Silver PHS 1962 In ovo experiments concerning the eye, the orbit, and certain juxta-orbital structures, in the chick embryo. J. Embryol. Exp. Morp. 10 423–450

    CAS  Google Scholar 

  • Steinberg MS 2007 Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17 281–286

    Article  CAS  PubMed  Google Scholar 

  • Tsarfaty I, Resau JH, Rulong S, Keydar I, Faletto DL and Vande Woude GF 1992 The met proto-oncogene receptor and lumen formation. Science 257 1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Tung EW and Winn L 2011 Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol. Pharmacol. 80 979–987

    Article  CAS  PubMed  Google Scholar 

  • Turing AM 1952 The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237 37–72

    Article  Google Scholar 

  • van der Meer JR 1997 Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71 159–178

    Google Scholar 

  • van Wyhe J 2011 Where do Darwin’s finches come from? Evol. Rev. 3 185–195

    Google Scholar 

  • Wang Z, Xu L, Zhu X, Cui W, Sun Y, Nishijo H, Peng Y and Li R 2010 Demethylation of specific Wnt/β−Catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure. Anat. Rec. 293 1947–1953

    Article  CAS  Google Scholar 

  • Webster G and Goodwin B 1982 The origin of species: a structuralist approach. J. Soc. Biol. Struct. 5 15–47

    Article  Google Scholar 

  • Wu P, Jiang TX, Shen JY, Widelitz RB and Chuong CM 2006 Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution. Dev. Dyn. 235 1400–1412

    Article  PubMed  Google Scholar 

  • Wu P, Jiang TX, Suksaweang S, Widelitz RB and Chuong CM 2004 Molecular shaping of the beak. Science 305 1465–1466

    Article  CAS  PubMed  Google Scholar 

  • Wyngaarden LA, Vogeli KM, Ciruna BG, Wells M, Hadjantonakis AK and Hopyan S 2010 Oriented cell motility and division underlie early limb bud morphogenesis. Development 137 2551–2558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young NM, Chong HJ, Hu D, Hallgrímsson B and Marcucio RS 2010 Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development 137 3405–3409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeller R, López-Ríos J and Zúñiga A 2009 Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 10 845–858

    Article  CAS  PubMed  Google Scholar 

  • Zhang YT, Alber MS and Newman SA 2013 Mathematical modeling of vertebrate limb development. Math. Biosci. 243 1–17

    Article  PubMed  Google Scholar 

  • Zhu J, Nakamura E, Nguyen MT, Bao X, Akiyama H and Mackem S 2008 Uncoupling Sonic hedgehog control of pattern and expansion of the developing limb bud. Dev. Cell 14 624–632

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhang Y-T, Alber MS and Newman SA 2010 Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PLoS One 5 e10892

  • Zusi RL 1993 Patterns of diversity in the avian skull; in The skull (eds) J Hanken and BK Hall (Chicago: University of Chicago Press) pp 391–437

    Google Scholar 

Download references

Acknowledgements

We thank Vidyanand Nanjundiah for organizing the Almora workshop on ‘Individuals and Groups’, where one of us (M L-M) presented a preliminary version of this paper. We also thank V Nanjundiah and three reviewers for incisive criticism of an earlier draft. We acknowledge support from the European Commission (Marie Curie Fellowship PIOF-GA-2008-219676) (M L-M) and the National Science Foundation (SAN).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Linde-Medina or Stuart A Newman.

Additional information

[Linde-Medina M and Newman SA 2014 Limb, tooth, beak: Three modes of development and evolutionary innovation of form. J. Biosci. 39 1–13] DOI 10.1007/s12038-013-9355-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linde-Medina, M., Newman, S.A. Limb, tooth, beak: Three modes of development and evolutionary innovation of form. J Biosci 39, 211–223 (2014). https://doi.org/10.1007/s12038-013-9355-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9355-2

Keywords

Navigation