Skip to main content

Cells, Development, and Evolution: Teeth Studies at the Intersection of Fields

  • Chapter
  • First Online:
The Darwinian Tradition in Context

Abstract

Early in the twentieth century, biology was seen as grounded in the dual foundations of cells and evolution. Cells provided the most basic living unit, and evolution provided a way for cells to become established in different organisms. However, as the twentieth century progressed, cells and cellular level phenomena became embedded in different research traditions within developmental biology with varying connections to an evolutionary framework. While researchers focusing on differentiation could continue to link their research to evolution through heredity, those focused on morphogenesis largely gave up any evolutionary perspective. Morphogenetic research programs continued, without evolution, until late into the twentieth century, when fruitful new insights brought development back into the process of evolution. This chapter takes teeth as an exemplary case study for these changes with special focus on the enamel knot, now thought of as the morphogenetic control center of the developing tooth. Once development, and especially cellular level phenomena, was seen in the light of evolution, the enamel knot became the central component of a new paradigm in evolutionary developmental biology—one that, to this day, continues to provide a means of understanding the development and evolution of teeth. The intersection of cells and “the Darwinian tradition” is a complex relationship. This chapter offers an alternative history of the ways in which development, evolution, and cells were brought together throughout the twentieth century and challenges the common conception that genes are the sole locus of explanation for research at the intersection of development and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens H (1913) Die Entwickelung der menschlichen Zähne. Anatomische Hefte 48:167–266

    Article  Google Scholar 

  • Allen G (1975) Life science in the twentieth century. Wiley, New York

    Google Scholar 

  • Allen G (1979) Thomas Hunt Morgan. The man and his science. Princeton University Press, Princeton

    Google Scholar 

  • Born G (1883) Die Plattenmodellimethode. Arch Mikrosk Anat 22:584–599

    Article  Google Scholar 

  • Butler P (1956) The ontogeny of molar pattern. Biol Rev Camb Philos Soc 31:30–69

    Article  Google Scholar 

  • Cain J (2009) Rethinking the synthesis period in evolutionary studies. J Hist Biol 42:621–648

    Article  Google Scholar 

  • Cain J, Ruse M (2009) Descended from Darwin. Insights into the history of evolutionary studies, 199–1970. American Philosophical Society, Philadelphia

    Google Scholar 

  • Churchill F (2015) August Weismann. Development, heredity, evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Delisle R (2009) The uncertain foundation of neo-Darwinism: metaphysical and epistemological pluralism in the evolutionary synthesis. Stud Hist Philos Biol Biomed Sci 40:119–132

    Article  Google Scholar 

  • Delisle R (2011) What was really synthesized during the evolutionary synthesis? A historiographic proposal. Stud Hist Philos Biol Biomed Sci 42:50–59

    Article  Google Scholar 

  • Delisle RG (2017) From Charles Darwin to the evolutionary synthesis: weak and diffused connections only. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 133–168

    Chapter  Google Scholar 

  • Depew DJ (2017) Darwinism in the 20th century: productive encounters with saltation, acquired characteristics, and development. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 61–88

    Chapter  Google Scholar 

  • Gudipaty S, Lindblom J, Loftus P, Redd M, Edes K, Davey C, Krishnegowda V, Rosenblatt J (2017) Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543:118–121

    Article  CAS  Google Scholar 

  • Hopwood N (1999) Giving body’ to embryos: modeling, mechanism, and the microtome in late 19th-century anatomy. Isis 90:462–496

    Article  CAS  Google Scholar 

  • Hopwood N (2002) Embryos in wax: models from the Ziegler Studio. Whipple Museum of the History of Science, Cambridge

    Google Scholar 

  • Hopwood N (2015) Haeckel’s embryos. Images, evolution, and fraud. University of Chicago Press, Chicago

    Google Scholar 

  • Huxley J (1927) The stream of life. Harper and Brothers, New York

    Google Scholar 

  • Huxley J (1943) Evolution. The modern synthesis. Harper and Brothers, New York

    Google Scholar 

  • Jernvall J (1995) Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zool Fenn 198:1–61

    Google Scholar 

  • Jernvall J (2000) Linking development with generation of novelty in mammalian teeth. Proc Natl Acad Sci 97:2641–2645

    Article  CAS  Google Scholar 

  • Jernvall J, Kettunen P, Karavanova I, Lawrence M, Thesleff I (1994) Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol 38:463–469

    CAS  PubMed  Google Scholar 

  • Jernvall J, Åberg Y, Kettunen P, Keränen S, Thesleff I (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161–169

    CAS  PubMed  Google Scholar 

  • Jernvall J, Keränen S, Thesleff I (2000) Evolutionary modification of development in mammalian teeth: quantifying gene expression patterns and topography. Proc Natl Acad Sci 97:14444–14448

    Article  CAS  Google Scholar 

  • Keränen S, Åberg T, Kettunen P, Thesleff I, Jernvall J (1998) Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Dev Genes Evol 208:477–486

    Article  Google Scholar 

  • Keränen S, Kettunen P, Åberg T, Thesleff I, Jernvall J (1999) Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol 209:495–506

    Article  Google Scholar 

  • Kirino T, Nozue T, Inoue M (1973) Deficiency of enamel knot in experimental morphology. Okajimas Folia Anat Jpn 50:117–131

    Article  CAS  Google Scholar 

  • Koopman P (2001) In situ hybridization to mRNA: from black art to guiding light. Int J Dev Biol 45:619–622

    CAS  PubMed  Google Scholar 

  • Laubichler M, Maienschein J (2007) From embryology to evo-devo: a history of developmental evolution. MIT Press, Boston

    Google Scholar 

  • MacCord K (2017) Development, evolution, and teeth: how we came to explain the morphological evolution of the mammalian dentition. PhD dissertation at Arizona State University

    Google Scholar 

  • MacCord K, Maienschein J (2017) The historiography of embryology and developmental biology. In: Dietrich M, Borrello M, Harman O (eds) Historiography of biology. Springer, New York

    Google Scholar 

  • Maienschein J, Laubichler M (2014) Exploring development and evolution on the tangled bank. In: Thompson P, Walsh D (eds) Evolutionary biology: conceptual, ethical, and religious issues. Cambridge University Press, Cambridge, pp 151–171

    Chapter  Google Scholar 

  • Mayr E (1982) The growth of biological thought. Diversity, evolution, and inheritance. Harvard University Press, Cambridge

    Google Scholar 

  • Newman S, Forgacs G, Müller G (2006) Before programs: the physical origination of multicellular forms. Int J Dev Biol 50:289–299

    Article  CAS  Google Scholar 

  • Niswander L, Martin G (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768

    CAS  PubMed  Google Scholar 

  • Nozue T (1971a) Chronological study of enamel knot with special reference to mitoses in enamel knot. Okajimas Folia Anat Jpn 48:1–13

    Article  CAS  Google Scholar 

  • Nozue T (1971b) Specific spindle cells and globular substances in enamel knot. Okajimas Folia Anat Jpn 48:139–151

    Article  CAS  Google Scholar 

  • Pigliucci M (2017) Darwinism after the modern synthesis. In: Delisle RG (ed) The Darwinian tradition in context: research programs in evolutionary biology. Springer, Cham, pp 89–104

    Google Scholar 

  • Pispa J, Jung H, Jernvall J, Kettunen P, Mustonen T, Tabata M, Kere J, Thesleff I (1999) Cusp patterning defect in Tabby mouse teeth and its partial rescue by FGF. Dev Biol 216:521–534

    Article  CAS  Google Scholar 

  • Radlanski R (1995) Morphogenesis of human tooth primordia: the importance of 3D computer-assisted reconstruction. Int J Dev Biol 39:249–256

    CAS  PubMed  Google Scholar 

  • Reichenbach E (1926) Die Umwandlung der Schmelzpulpa und der Schmelzepithelien während der Entwicklung des Zahnes. I Untersuchungsmethoden und eigene Befunde. Z ges Anat I Z Anat EntwGesch 80:524–546

    Article  Google Scholar 

  • Reichenbach E (1928) Die Umwandlungen der Schmelzpulpa und der Schmelzepithelien während der Entwicklung des Zahnes. II und III. Z Anat Entwicklungsgesch 85:490–540

    Article  Google Scholar 

  • Richards R (2008) The tragic sense of life. Ernst Haeckel and the struggle over evolutionary thought. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Smocovitis B (1996) Unifying biology: the evolutionary synthesis and evolutionary biology. Princeton University Press, Princeton

    Google Scholar 

  • Tanimura T (1968) Effects of mitomycin C administered at various stages of pregnancy upon mouse fetuses. Okajimas Folia Anat Jpn 44:337–355

    Article  CAS  Google Scholar 

  • Thompson D (1917) On growth and form. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vaahtokari A, Åberg T, Jernvall J, Keränen S, Thesleff I (1996) The enamel knot as a signaling center in the developing mouse tooth. Mech Dev 54:39–43

    Article  CAS  Google Scholar 

  • Wolpert L (1994) Do we understand development? Science 266:571–572

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate MacCord .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

MacCord, K., Maienschein, J. (2017). Cells, Development, and Evolution: Teeth Studies at the Intersection of Fields. In: Delisle, R. (eds) The Darwinian Tradition in Context. Springer, Cham. https://doi.org/10.1007/978-3-319-69123-7_13

Download citation

Publish with us

Policies and ethics