Skip to main content

Advertisement

Log in

Interaction of nucleic acids with carbon nanotubes and dendrimers

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Nucleic acid interaction with nanoscale objects like carbon nanotubes (CNTs) and dendrimers is of fundamental interest because of their potential application in CNT separation, gene therapy and antisense therapy. Combining nucleic acids with CNTs and dendrimers also opens the door towards controllable self-assembly to generate various supra-molecular and nano-structures with desired morphologies. The interaction between these nanoscale objects also serve as a model system for studying DNA compaction, which is a fundamental process in chromatin organization. By using fully atomistic simulations, here we report various aspects of the interactions and binding modes of DNA and small interfering RNA (siRNA) with CNTs, graphene and dendrimers. Our results give a microscopic picture and mechanism of the adsorption of single- and double-strand DNA (ssDNA and dsDNA) on CNT and graphene. The nucleic acid–CNT interaction is dominated by the dispersive van der Waals (vdW) interaction. In contrast, the complexation of DNA (both ssDNA and dsDNA) and siRNA with various generations of poly-amido-amine (PAMAM) dendrimers is governed by electrostatic interactions. Our results reveal that both the DNA and siRNA form stable complex with the PAMAM dendrimer at a physiological pH when the dendrimer is positively charged due to the protonation of the primary amines. The size and binding energy of the complex increase with increase in dendrimer generation. We also give a summary of the current status in these fields and discuss future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Bergstrom CT and Antiat R 2005 On RNA interference as template immunity. J. Biosci. 30 295–297

    Article  PubMed  CAS  Google Scholar 

  • Bielinska AU, KukowskaLatallo JF and Baker JR 1997 The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim. Biophys. Acta - Gene Struc. Exp. 1353 180–190

    Google Scholar 

  • Bloomfield VA, Crothers DM and Tinoco I (2000) Nucleic acids: structures, properties, and functions (California, University Science Books)

    Google Scholar 

  • Bosman AW, Janssen HM and Meijer EW 1999 About dendrimers: Structure, physical properties, and applications. Chem. Rev. 99 1665–1688

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, et al. 2009 CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 30 1545–1614

    Article  PubMed  CAS  Google Scholar 

  • Calladine CR and Drew HR 1984 A Base-Centered Explanation of the B-to-a Transition in DNA. J. Mol. Biol. 178 773–781

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE, et al. 2006 AMBER9 (San Francisco: University of California)

    Google Scholar 

  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS and Geim AK 2009 The electronic properties of graphene. Rev. Modern Phy. 81 109–162

    Google Scholar 

  • Cheatham TE and Kollman PA 1996 Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J. Mol. Biol. 259 434–444

    Article  PubMed  CAS  Google Scholar 

  • Chou SG, Ribeiro HB, Barros EB, Santos AP, Nezich D, Samsonidze GG, Fantini C, Pimenta MA, et al. 2004 Optical characterization of DNA-wrapped carbon nanotube hybrids. Chem. Phy. Lett. 397 296–301

    Article  CAS  Google Scholar 

  • Dickerson RE 1992 DNA-Structure from a to Z. Methods Enzymol. 211 67–111

    Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, et al. 2003 A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24 1999–2012

    Article  PubMed  CAS  Google Scholar 

  • Dufes C, Uchegbu IF and Schatzlein AG 2005 Dendrimers in gene delivery. Adv. Drug Delivery Rev. 57 2177–2202

    Google Scholar 

  • Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW and Whang EE 2003 RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem. Biophys. Res. Commun. 311 786–792

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T 2001a Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411 494–498

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W and Tuschl T 2001b RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15 188–200

  • Fant K, Esbjorner EK, Lincoln P and Norden B 2008 DNA condensation by PAMAM dendrimers: Self-assembly characteristics and effect on transcription. Biochemistry 47 1732–1740

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE and Mello CC 1998 Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 806–811

    Article  PubMed  CAS  Google Scholar 

  • Franklin RE and Gosling RG 1953 Molecular configuration in sodium thymonucleate. Nature 171 740–741

    Article  PubMed  CAS  Google Scholar 

  • Frechet JMJ 1994 Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263 1710–1715

    Article  PubMed  CAS  Google Scholar 

  • Gao HJ, Kong Y, Cui DX and Ozkan CS 2003 Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett. 3 471–473

    Google Scholar 

  • Garaj S, Hubbard W, Reina A, Kong J, Branton D and Golovchenko JA 2010 Graphene as a subnanometre trans-electrode membrane. Nature 467 190–193

    Article  PubMed  CAS  Google Scholar 

  • Geim AK and Novoselov KS 2007 The rise of graphene. Nat. Mater. 6 183–191

    Article  PubMed  CAS  Google Scholar 

  • Grayson SM and Frechet JMJ 2001 Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101 3819–3867

    Article  PubMed  CAS  Google Scholar 

  • Grayson ACR, Doody AM and Putnam D 2006 Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharmaceut. Res. 23 1868–1876

    Article  Google Scholar 

  • Haensler J and Szoka FC 1993 Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 4 372–379

    Google Scholar 

  • Hannon GJ 2002 RNA interference. Nature 418 244–251

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ and Rossi JJ 2004 Unlocking the potential of the human genome with RNA interference. Nature 431 371–378

    Article  PubMed  CAS  Google Scholar 

  • Harries D, May S, Gelbart WM and Ben-Shaul A 1998 Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys. J. 75 159–173

    Article  PubMed  CAS  Google Scholar 

  • Heller DA, Jeng ES, Yeung TK, Martinez BM, Moll AE, Gastala JB and Strano MS 2006 Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311 508–511

    Article  PubMed  CAS  Google Scholar 

  • Herskovits T and Singer SJ 1961 Nonaqueous solutions of DNA - denaturation in methanol and ethanol. Arch. Biochem. Biophy. 94 99–114

    Article  CAS  Google Scholar 

  • Ivanov VI, Minchenkova LE, Minyat EE, Frank-Kamenetskii MD and Schyolkina AK 1974 The B to Α transition of DNA in solution. J. Mol. Biol. 87 817–833

    Article  PubMed  CAS  Google Scholar 

  • Jacobomolina A, Ding JP, Nanni RG, Clark AD, Lu XD, Tantillo C, Williams RL, Kamer G, et al. 1993 Crystal-structure of human-immunodeficiency-virus type-1 reverse-transcriptase complexed with double-stranded DNA at 3.0 angstrom resolution shows bent DNA. Proc. Nat. Acad. Sci. USA 90 6320–6324

    Google Scholar 

  • Jacque JM, Triques K and Stevenson M 2002 Modulation of HIV-1 replication by RNA interference. Nature 418 435–438

    Article  PubMed  CAS  Google Scholar 

  • Jayaram B, Sprous D, Young MA and Beveridge DL 1998 Free energy analysis of the conformational preferences of A and B forms of DNA in solution. J. Am. Chem. Soc. 120 10629–10633

    Article  CAS  Google Scholar 

  • Johnson RR, Johnson ATC and Klein ML 2008 Probing the structure of DNA-carbon nanotube hybrids with molecular dynamics. Nano Lett. 8 69–75

    Google Scholar 

  • Jones S, van Heyningen P, Berman HM and Thornton JM 1999 Protein-DNA interactions: A structural analysis. J. Mol. Biol. 287 877–896

    Article  PubMed  CAS  Google Scholar 

  • Jovin TM, Soumpasis DM and McIntosh LP 1987 The Transition between B-DNA and Z-DNA. Annu. Rev. Phys. Chem. 38 521–560

    Article  CAS  Google Scholar 

  • Kiefer JR, Mao C, Braman JC and Beese LS 1998 Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391 304–307

    Article  PubMed  CAS  Google Scholar 

  • Kim DH and Rossi JJ 2007 Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 8 173–184

    Article  PubMed  CAS  Google Scholar 

  • Klug A 2004 The discovery of the DNA double helix. J. Mol. Biol. 335 3–26

    Article  PubMed  CAS  Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, et al. 2000 Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33 889–897

    Article  PubMed  CAS  Google Scholar 

  • KukowskaLatallo JF, Bielinska AU, Johnson J, Spindler R, Tomalia DA and Baker JR 1996 Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Nat. Acad. Sci. USA 93 4897–4902

    Google Scholar 

  • Kurreck J 2009 RNA Interference: From basic research to therapeutic applications. Angewandte Chemie-Intl. Ed. 48 1378–1398

    Google Scholar 

  • Larin S, Lyulin S, Lyulin A and Darinskii A 2009a Computer Simulations of Interpolyelectrolyte Complexes Formed by Star-like Polymers and Linear Polyelectrolytes. Macromolecular Symposia 278 40–47

    Article  CAS  Google Scholar 

  • Larin SV, Lyulin SV, Lyulin AV and Darinskii AA 2009b Charge inversion of dendrimers in complexes with linear polyelectrolytes in the solutions with low pH. Polymer Sci. Ser. A 51 459–468

  • Larin SV, Darinskii AA, Lyulin AV and Lyulin SV 2010 Linker formation in an overcharged complex of two dendrimers and linear polyelectrolyte. J. Phys. Chem. B 114 2910–2919

    Google Scholar 

  • Lee NS, Dohjima T, Bauer G, Li HT, Li MJ, Ehsani A, Salvaterra P and Rossi J 2002 Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20 500–505

    PubMed  CAS  Google Scholar 

  • Lin ST, Blanco M and Goddard WA 2003 The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids. J. Chem. Phys. 119 11792–11805

    Article  CAS  Google Scholar 

  • Lin ST, Maiti PK and Goddard WA 2010 Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations. J. Phys. Chem. B 114 8191

    Google Scholar 

  • Liu Z, Winters M, Holodniy M and Dai HJ 2007 siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chemie-Intl. Ed. 46 2023–2027

    Google Scholar 

  • Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY and Dai HJ 2008 Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68 6652–6660

  • Liu Z, Tabakman S, Welsher K and Dai HJ 2009 Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2 85–120

    Google Scholar 

  • Livolant F 1991 Ordered phases of DNA in vivo and in vitro. Physica A 176 117–137

    Article  CAS  Google Scholar 

  • Lu XJ, Shakked Z and Olson WK 2000 A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 300 819–840

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL and Ke PC 2004 RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 4 2473–2477

  • Lyulin SV, Darinskii AA and Lyulin AV 2005 Computer simulation of complexes of dendrimers with linear polyelectrolytes. Macromolecules 38 3990–3998

    Article  CAS  Google Scholar 

  • Lyulin SV, Vattulainen I and Gurtovenko AA 2008 Complexes comprised of charged dendrimers, linear polyelectrolytes, and counterions: Insight through coarse-grained molecular dynamics simulations. Macromolecules 41 4961–4968

    Article  CAS  Google Scholar 

  • Maiti PK and Bagchi B 2006 Structure and dynamics of DNA-dendrimer complexation: Role of counterions, water, and base pair sequence. Nano Lett. 6 2478–2485

    Google Scholar 

  • Maiti PK and Bagchi B 2009 Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer. J. Chem. Phys. 131 214901

    Google Scholar 

  • Maiti PK, Cagin T, Wang GF and Goddard WA 2004 Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules 37 6236–6254

    Article  CAS  Google Scholar 

  • Maiti PK, Li YY, Cagin T and Goddard WA 2009 Structure of polyamidoamide dendrimers up to limiting generations: A mesoscale description. J. Chem. Phys. 130 144902

    Google Scholar 

  • Meister G and Tuschl T 2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431 343–349

    Article  PubMed  CAS  Google Scholar 

  • Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, et al. 2010 DNA Translocation through Graphene Nanopores. Nano Lett. 10 2915–2921

  • Miller JL and Kollman PA 1997 Observation of an A-DNA to B-DNA transition in a nonhelical nucleic acid hairpin molecule using molecular dynamics. Biophys. J. 73 2702–2710

    Article  PubMed  CAS  Google Scholar 

  • Mintzer MA and Simanek EE 2009 Nonviral Vectors for gene delivery. Chem. Rev. 109 259–302

    Article  PubMed  CAS  Google Scholar 

  • Nandy B and Maiti PK 2011 DNA compaction by a dendrimer. J. Phys. Chem. B 115 217–230

    Google Scholar 

  • Napoli C, Lemieux C and Jorgensen R 1990 Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2 279–289

    PubMed  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV and Firsov AA 2004 Electric field effect in atomically thin carbon films. Science 306 666–669

    Article  PubMed  CAS  Google Scholar 

  • Ottaviani MF, Furini F, Casini A, Turro NJ, Jockusch S, Tomalia DA and Messori L 2000 Formation of supramolecular structures between DNA and starburst dendrimers studied by EPR, CD, UV, and melting profiles. Macromolecules 33 7842–7851

    Article  CAS  Google Scholar 

  • Pavan GM, Danani A, Pricl S and Smith DK 2009 Modeling the multivalent recognition between dendritic molecules and DNA: Understanding how ligand "sacrifice" and screening can enhance binding. J. Am. Chem. Soc. 131 9686–9694

    Article  PubMed  CAS  Google Scholar 

  • Pavan GM, Albertazzi L and Danani A 2010 Ability to adapt: different generations of PAMAM dendrimers show different behaviors in binding siRNA. J. Phys. Chem. B 114 2667–2675

    Google Scholar 

  • Reynolds JA and Hough JM 1957 Formulae for dielectric constant of mixtures. Proc. Phys. Soc. London Sec. B 70 769–775

    Google Scholar 

  • Rich A and Zhang SG 2003 Z-DNA: the long road to biological function. Nat. Rev. Genet. 4 566–572

    Article  PubMed  CAS  Google Scholar 

  • Saenger W (1984) Principles of nucleic acid structure (New York: Springer-Verlag)

    Book  Google Scholar 

  • Santosh M and Maiti PK 2009 Force induced DNA melting. J. Phys. - Condensed Matter 21 034113

    Google Scholar 

  • Santosh M and Maiti PK 2011 Structural rigidity of paranemic crossover and juxtapose DNA nanostructures. Biophys. J. 101 1393–1402

    Article  PubMed  CAS  Google Scholar 

  • Santosh M, Panigrahi S, Bhattacharyya D, Sood AK and Maiti PK 2012 Unzipping and binding of small interfering RNA with single walled Carbon Nanotube: a platform for small interfering RNA delivery. J. Chem. Phys. 136 065106

    Google Scholar 

  • Scherrenberg R, Coussens B, van Vliet P, Edouard G, Brackman J, de Brabander E and Mortensen K 1998 The molecular characteristics of poly(propyleneimine) dendrimers as studied with small-angle neutron scattering, viscosimetry, and molecular dynamics. Macromolecules 31 456–461

    Article  CAS  Google Scholar 

  • Schiessel H 2003 The physics of chromatin. J. Phys. - Condensed Matter 15 R699-R774

    Google Scholar 

  • Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK and Dekker C 2010 DNA Translocation through graphene nanopores. Nano Lett. 10 3163–3167

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, et al. 2004 Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432 173–178

    Article  PubMed  CAS  Google Scholar 

  • Sponer J, Jurecka P and Hobza P 2004 Accurate interaction energies of hydrogen-bonded nucleic acid base pairs. J. Am. Chem. Soc. 126 10142–10151

    Article  PubMed  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST and Ruoff RS 2006 Graphene-based composite materials. Nature 442 282–286

    Article  PubMed  CAS  Google Scholar 

  • Tsubouchi A, Sakakura J, Yagi R, Mazaki Y, Schaefer E, Yano H and Sabe H 2002 Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion and migration. J. Cell Biol. 159 673–683

    Google Scholar 

  • Urban-Klein B, Werth S, Abuharbeid S, Czubayko F and Aigner A 2005 RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12 461–466

    Google Scholar 

  • Vangunsteren WF and Berendsen HJC 1987 GROMOS-87 Manual.

  • Vasumathi V and Maiti PK 2010 Complexation of siRNA with dendrimer: A molecular modeling approach. Macromolecules 43 8264–8274

    Article  CAS  Google Scholar 

  • Watson JD and Crick FHC 1953 Molecular Structure of nucleic acids - a structure for deoxyribose nucleic acid. Nature 171 737–738

    Article  PubMed  CAS  Google Scholar 

  • Welch P and Muthukumar M 2000 Dendrimer-polyelectrolyte complexation: A model guest-host system. Macromolecules 33 6159–6167

    Article  CAS  Google Scholar 

  • Wilkins MHF, Stokes AR and Wilson HR 1953 Molecular Structure of Deoxypentose Nucleic Acids. Nature 171 738–740

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD and Aronin N 2003 siRNAs knock down hepatitis. Nat. Med. 9 266–267

    Article  PubMed  CAS  Google Scholar 

  • Zhang YB, Tan YW, Stormer HL and Kim P 2005 Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438 201–204

    Article  PubMed  CAS  Google Scholar 

  • Zhao X and Johnson JK 2007 Simulation of adsorption of DNA on carbon nanotubes. J. Am. Chem. Soc. 129 10438–10445

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE and Tassi NG 2003a DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2 338–342

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Jagota A, Strano MS, Santos AP, Barone P, Chou SG, Diner BA, Dresselhaus MS, et al. 2003b Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302 1545–1548

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SB and Pheiffer BH 1979 Direct demonstration that the ethanol-induced transition of DNA is between the a-forms and B-forms - X-ray-diffraction study. J. Mol. Biol. 135 1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SC, Zeng FW, Reichert DEC and Kolotuchin SV 1996 Self-assembling dendrimers. Science 271 1095–1098

    Article  PubMed  CAS  Google Scholar 

  • Zinchenko AA and Chen N 2006 Compaction of DNA on nanoscale three-dimensional templates. J. Phys. - Condensed Matter 18 R453-R480

    Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology, India, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabal K Maiti.

Additional information

[Nandy B, Santosh M and Maiti PK 2012 Interaction of nucleic acids with carbon nanotubes and dendrimers. J. Biosci. 37 1–18] DOI 10.1007/s12038-012-9220-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandy, B., Santosh, M. & Maiti, P.K. Interaction of nucleic acids with carbon nanotubes and dendrimers. J Biosci 37, 457–474 (2012). https://doi.org/10.1007/s12038-012-9220-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-012-9220-8

Keywords

Navigation