Skip to main content

Advertisement

Log in

Autophagy: A double-edged sword in Alzheimer’s disease

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Autophagy is a major protein degradation pathway that is essential for stress-induced and constitutive protein turnover. Accumulated evidence has demonstrated that amyloid-β (Aβ) protein can be generated in autophagic vacuoles, promoting its extracellular deposition in neuritic plaques as the pathological hallmark of Alzheimer’s disease (AD). The molecular machinery for Aβ generation, including APP, APP-C99 and β-/γ-secretases, are all enriched in autophagic vacuoles. The induction of autophagy can be vividly observed in the brain at early stages of sporadic AD and in an AD transgenic mouse model. Accumulated evidence has also demonstrated a neuroprotective role of autophagy in mediating the degradation of aggregated proteins that are causative of various neurodegenerative diseases. Autophagy is thus widely regarded as an intracellular hub for the removal of the detrimental Aβ peptides and Tau aggregates. Nonetheless, compelling data also reveal an unfavorable function of autophagy in facilitating the production of intracellular Aβ. The two faces of autophagy on the homeostasis of Aβ place it in a very unique and intriguing position in AD pathogenesis. This article briefly summarizes seminal discoveries that are shedding new light on the critical and unique roles of autophagy in AD and potential therapeutic approaches against autophagy-elicited AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  • Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, Nabi IR and Roberge M 2009 Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 4 e7124

  • Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, et al. 2006 Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15 433–442

    Article  PubMed  CAS  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A and Partridge L 2010 Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11 35–46

    Article  PubMed  CAS  Google Scholar 

  • Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH and Nixon RA 2008 Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28 6926–6937

    Article  PubMed  CAS  Google Scholar 

  • Boland B, Smith DA, Mooney D, Jung SS, Walsh DM and Platt FM 2010 Macroautophagy is not directly involved in the metabolism of amyloid precursor protein. J. Biol. Chem. 285 37415–37426

    Article  PubMed  CAS  Google Scholar 

  • Bove J, Martinez-Vicente M and Vila M 2011 Fighting neurodegeneration with rapamycin: mechanistic insights. Nat. Rev. 12 437–452

    Article  CAS  Google Scholar 

  • Caccamo A, Majumder S, Richardson A, Strong R and Oddo S 2010 Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta and Tau: effects on cognitive impairments. J. Biol. Chem. 285 13107–13120

    Article  PubMed  CAS  Google Scholar 

  • Dall’Armi C, Hurtado-Lorenzo A, Tian H, Morel E, Nezu A, Chan RB, Yu WH, Robinson KS, Yeku O, Small SA, et al. 2010 The phospholipase D1 pathway modulates macroautophagy. Nat. Commun. 1 142

  • Demarin V, Podobnik SS, Storga-Tomic D and Kay G 2004 Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp. Clin. Res. 30 27–33

    Google Scholar 

  • Dolan PJ and Johnson GV 2010 A caspase cleaved form of tau is preferentially degraded through the autophagy pathway. J. Biol. Chem. 285 21978–21987

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, et al. 2009 Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11 1305–1314

    Google Scholar 

  • Esselens C, Oorschot V, Baert V, Raemaekers T, Spittaels K, Serneels L, Zheng H, Saftig P, De Strooper B, Klumperman J, et al. 2004 Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J. Cell Biol. 166 1041–1054

    Google Scholar 

  • Florez-McClure ML, Hohsfield LA, Fonte G, Bealor MT and Link CD 2007 Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3 569–580

    PubMed  CAS  Google Scholar 

  • Gong CX, Grundke-Iqbal I and Iqbal K 2010 Targeting tau protein in Alzheimer’s disease. Drugs Aging 27 351–365

    Article  PubMed  CAS  Google Scholar 

  • Gong CX, Liu F, Grundke-Iqbal I and Iqbal K 2005 Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural. Transm. 112 813–838

    Article  PubMed  CAS  Google Scholar 

  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, Greenfield JP, Haroutunian V, Buxbaum JD, Xu H, et al. 2000 Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol. 156 15–20

    Article  PubMed  CAS  Google Scholar 

  • Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM and LaFerla FM 2008 Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 28 11500–11510

    Article  PubMed  CAS  Google Scholar 

  • Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M and Ko LW 2008 Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur. J. Neurosci. 27 1119–1130

    Article  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, et al. 2006 Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441 885–889

    Article  PubMed  CAS  Google Scholar 

  • Hardy J and Selkoe DJ 2002 The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297 353–356

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Sato N, Yamamoto A, Ikegame Y, Nakashima S, Ogihara T and Morishita R 2009 Alzheimer disease-associated peptide, amyloid beta40 inhibits vascular regeneration with induction of endothelial autophagy. Arterioscler. Thromb. Vasc. Biol. 29 1909–1915

    Article  PubMed  CAS  Google Scholar 

  • Huang WP and Klionsky DJ 2002 Autophagy in yeast: a review of the molecular machinery. Cell Struct. Funct. 27 409–420

    Google Scholar 

  • Hung SY, Huang WP, Liou HC and Fu WM 2009 Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy 5 502–510

    Article  PubMed  CAS  Google Scholar 

  • Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K and Komatsu M 2008 Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283 22847–22857

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Iritani S and Tsuchiya K 1998 Alz-50/Gallyas-positive lysosome-like intraneuronal granules in Alzheimer’s disease and control brains. Neurosci. Lett. 258 113–116

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Tsuchiya K, Yamada S, Murayama S and Hori A 2000 Neurons containing Alz-50-immunoreactive granules around the cerebral infarction: evidence for the lysosomal degradation of altered tau in human brain? Neurosci. Lett. 284 187–189

    Article  PubMed  CAS  Google Scholar 

  • Itzhaki RF, Cosby SL and Wozniak MA 2008 Herpes simplex virus type 1 and Alzheimer’s disease: the autophagy connection. J. Neurovirol. 14 1–4

    Article  PubMed  CAS  Google Scholar 

  • Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E and Wyss-Coray T 2010 Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 5 e11102

  • Jimenez-Sanchez M, Thompson F, Zavodsky E and Rubinsztein DC 2011 Autophagy and polyglutamine diseases. Prog. Neurobiol. doi:10.1016/j.pneurobio.2011.08.013

  • Kang HT and Hwang ES 2009 Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8 426–438

    Article  PubMed  CAS  Google Scholar 

  • Kennelly S, Abdullah L, Kenny RA, Mathura V, Luis CA, Mouzon B, Crawford F, Mullan M and Lawlor B 2011 Apolipoprotein E genotype-specific short-term cognitive benefits of treatment with the antihypertensive nilvadipine in Alzheimer’s patients-an open-label trial. Int. J. Geriatr. Psychiatry. doi:10.1002/gps.2735

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, et al. 2009 A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33 505–516

  • Knaevelsrud H and Simonsen A 2010 Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett. 584 2635–2645

    Google Scholar 

  • Knecht E, Aguado C, Carcel J, Esteban I, Esteve JM, Ghislat G, Moruno JF, Vidal JM and Saez R 2009 Intracellular protein degradation in mammalian cells: recent developments. Cell Mol. Life Sci. 66 2427–2443

    Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, et al. 2006 Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441 880–884

    Article  PubMed  CAS  Google Scholar 

  • Lafay-Chebassier C, Paccalin M, Page G, Barc-Pain S, Perault-Pochat MC, Gil R, Pradier L and Hugon J 2005 mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer’s disease. J. Neurochem. 94 215–225

    Article  PubMed  CAS  Google Scholar 

  • LaFerla FM, Green KN and Oddo S 2007 Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. 8 499–509

    Article  CAS  Google Scholar 

  • Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, et al. 2010 Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141 1146–1158

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Sato Y and Nixon RA 2011 Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J. Neurosci. 31 7817–7830

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhang X, Yang D, Luo G, Chen S and Le W 2009 Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol. Aging 30 1091–1098

    Google Scholar 

  • Ling D, Song HJ, Garza D, Neufeld TP and Salvaterra PM 2009 Abeta42-induced neurodegeneration via an age-dependent autophagic-lysosomal injury in Drosophila. PLoS One 4 e4201

  • Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, et al. 2010 Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 107 14164–14169

    Google Scholar 

  • Lunemann JD, Schmidt J, Schmid D, Barthel K, Wrede A, Dalakas MC and Munz C 2007 Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann. Neurol. 61 476–483

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Huang Y, Chen SD and Halliday G 2010 Immunohistochemical evidence for macroautophagy in neurones and endothelial cells in Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 36 312–319

    Article  PubMed  CAS  Google Scholar 

  • Mattsson N, Zetterberg H, Bianconi S, Yanjanin NM, Fu R, Mansson JE, Porter FD and Blennow K 2011 Gamma-secretase-dependent amyloid-beta is increased in Niemann-Pick type C: a cross-sectional study. Neurology 76 366–372

    Article  PubMed  CAS  Google Scholar 

  • Meijer WH, van der Klei IJ, Veenhuis M and Kiel JA 2007 ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3 106–116

    PubMed  CAS  Google Scholar 

  • Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH and Levine B 2003 Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301 1387–1391

    Google Scholar 

  • Mizushima N, Levine B, Cuervo AM and Klionsky DJ 2008 Autophagy fights disease through cellular self-digestion. Nature 451 1069–1075

    Article  PubMed  CAS  Google Scholar 

  • Nakatogawa H, Ichimura Y and Ohsumi Y 2007 Atg8 a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130 165–178

    Article  PubMed  CAS  Google Scholar 

  • Neely KM, Green KN and Laferla FM 2011 Presenilin Is Necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase-independent manner. J. Neurosci. 31 2781–2791

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A and Cuervo AM 2005 Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64 113–122

    PubMed  Google Scholar 

  • Nixon RA and Yang DS 2011 Autophagy failure in Alzheimer’s disease-locating the primary defect. Neurobiol. Dis. 43 38–45

    Article  PubMed  CAS  Google Scholar 

  • Nunes PV, Forlenza OV and Gattaz WF 2007 Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br. J. Psychiatry 190 359–360

    Google Scholar 

  • Ohta K, Mizuno A, Ueda M, Li S, Suzuki Y, Hida Y, Hayakawa-Yano Y, Itoh M, et al. 2010 Autophagy impairment stimulates PS1 expression and gamma-secretase activity. Autophagy 6 345–352

    Article  PubMed  CAS  Google Scholar 

  • Pajak B, Songin M, Strosznajder JB and Gajkowska B 2009 Alzheimer’s disease genetic mutation evokes ultrastructural alterations: correlation to an intracellular Abeta deposition and the level of GSK-3beta-PY216) phosphorylated form. Neurotoxicology 30 581–588

    Article  PubMed  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G and Johansen T 2007 p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282 24131–24145

    Article  PubMed  CAS  Google Scholar 

  • Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, et al. 2008 The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118 2190–2199

    PubMed  CAS  Google Scholar 

  • Querfurth HW and LaFerla FM 2010 Alzheimer’s disease. New Engl. J. Med. 362 329–344

    Google Scholar 

  • Quintanilla RA, Dolan PJ, Jin YN and Johnson GV 2011 Truncated tau and Abeta cooperatively impair mitochondria in primary neurons. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2011.02.007

  • Riekkinen M, Laakso MP and Jakala P 1999 Clonidine impairs sustained attention and memory in Alzheimer’s disease. Neuroscience 92 975–982

    Article  PubMed  CAS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ and Mucke L 2007 Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316 750–754

    Article  PubMed  CAS  Google Scholar 

  • Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E and Vandenabeele P 2011 Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol. Dis. 43 68–78

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein DC, Marino G and Kroemer G 2011 Autophagy and aging. Cell 146 682–695

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ and Rubinsztein DC 2005 Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell. Biol. 170 1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, et al. 2007 Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol. 3 331–338

    Article  PubMed  CAS  Google Scholar 

  • Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P and Gouras GK 2002 Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Pathol. 161 1869–1879

    Article  PubMed  CAS  Google Scholar 

  • Tian Y, Bustos V, Flajolet M and Greengard P 2011 A small-molecule enhancer of autophagy decreases levels of Abeta and APP-CTF via Atg5-dependent autophagy pathway. FASEB J. 25 1934–1942

    Google Scholar 

  • Tung YT, Hsu WM, Lee H, Huang WP and Liao YF 2010 The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin. Cell Mol. Neurobiol. 30 795–806

    Article  CAS  Google Scholar 

  • Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM and Mandelkow E 2009 Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18 4153–4170

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, et al. 2008 Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4 295–305

    Article  PubMed  CAS  Google Scholar 

  • Wilson CA, Murphy DD, Giasson BI, Zhang B, Trojanowski JQ and Lee VM 2004 Degradative organelles containing mislocalized alpha-and beta-synuclein proliferate in presenilin-1 null neurons. J. Cell Biol. 165 335–346

    Google Scholar 

  • Wong ES, Tan JM, Soong WE, Hussein K, Nukina N, Dawson VL, Dawson TM, Cuervo AM and Lim KL 2008 Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum. Mol. Genet. 17 2570–2582

    Article  PubMed  CAS  Google Scholar 

  • Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, et al. 2011 Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134 258–277

    Article  PubMed  Google Scholar 

  • Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, et al. 2005 Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171 87–98

    Google Scholar 

  • Yu WH, Kumar A, Peterhoff C, Shapiro Kulnane L, Uchiyama Y, Lamb BT, Cuervo AM and Nixon RA 2004 Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 36 2531–2540

    Google Scholar 

  • Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D, et al. 2007 Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci. USA 104 19023–19028

    Google Scholar 

  • Zheng L, Kagedal K, Dehvari N, Benedikz E, Cowburn R, Marcusson J and Terman A 2009 Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis. Free Radical Biol. Med. 46 422–429

    Google Scholar 

  • Zheng L, Roberg K, Jerhammar F, Marcusson J and Terman A 2006a Autophagy of amyloid beta-protein in differentiated neuroblastoma cells exposed to oxidative stress. Neurosci. Lett. 394 184–189

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Roberg K, Jerhammar F, Marcusson J and Terman A 2006b Oxidative stress induces intralysosomal accumulation of Alzheimer amyloid beta-protein in cultured neuroblastoma cells. Ann. NY Acad. Sci. 1067 248–251

Download references

Acknowledgements

The authors thank the members of the Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, for stimulating discussions. This study was supported by the National Science Council, Taiwan (NSC 96-2311-B-002-012-MY3 to W-PH and NSC 98-2320-B-001-014-MY2 to Y-FL) and Academia Sinica (to Y-FL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Feng Liao.

Additional information

Ying-Tsen Tung and Bo-Jeng Wang and contributed equally to this work.

[Tung Y-T, Wang B-J, Hu M-K, Hsu W-M, Lee H, Huang W-P and Liao Y-F 2012 Autophagy: A double-edged sword in Alzheimer’s disease. J. Biosci. 37 1–9] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, YT., Wang, BJ., Hu, MK. et al. Autophagy: A double-edged sword in Alzheimer’s disease. J Biosci 37, 157–165 (2012). https://doi.org/10.1007/s12038-011-9176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9176-0

Keywords

Navigation