Skip to main content
Log in

The Evolutionarily Conserved Interaction Between LC3 and p62 Selectively Mediates Autophagy-Dependent Degradation of Mutant Huntingtin

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mammalian p62/sequestosome-1 protein binds to both LC3, the mammalian homologue of yeast Atg8, and polyubiquitinated cargo proteins destined to undergo autophagy-mediated degradation. We previously identified a cargo receptor-binding domain in Atg8 that is essential for its interaction with the cargo receptor Atg19 in selective autophagic processes in yeast. We, thus, sought to determine whether this interaction is evolutionally conserved from yeast to mammals. Using an amino acid replacement approach, we demonstrate that cells expressing mutant LC3 (LC3-K30D, LC3-K51A, or LC3-L53A) all exhibit defective lipidation of LC3, a disrupted LC3–p62 interaction, and impaired autophagic degradation of p62, suggesting that the p62-binding site of LC3 is localized within an evolutionarily conserved domain. Importantly, whereas cells expressing these LC3 mutants exhibited similar overall autophagic activity comparable to that of cells expressing wild-type LC3, autophagy-mediated clearance of the aggregation-prone mutant Huntingtin was defective in the mutant-expressing cells. Together, these results suggest that p62 directly binds to the evolutionarily conserved cargo receptor-binding domain of Atg8/LC3 and selectively mediates the clearance of mutant Huntingtin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Atgs:

Autophagy-related proteins

DMP:

Dimethyl pimelimidate dihydrochloride

EBSS:

Earle’s buffered salt saline

GFP:

Green fluorescent protein

HD:

Huntington’s disease

HEK293:

Human embryonic kidney cells

Htt:

Huntingtin

LC3:

Microtubule-associated protein (MAP) light chain 3

PE:

Phosphatidylethanolamine

References

  • Abeliovich H, Dunn WA Jr, Kim J, Klionsky DJ (2000) Dissection of autophagosome biogenesis into distinct nucleation and expansion steps. J Cell Biol 151:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Amar N, Lustig G, Ichimura Y, Ohsumi Y, Elazar Z (2006) Two newly identified sites in the ubiquitin-like protein Atg8 are essential for autophagy. EMBO Rep 7:635–642

    CAS  PubMed  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  Google Scholar 

  • Boudjelal M, Wang Z, Voorhees JJ, Fisher GJ (2000) Ubiquitin/proteasome pathway regulates levels of retinoic acid receptor gamma and retinoid X receptor alpha in human keratinocytes. Cancer Res 60:2247–2252

    CAS  PubMed  Google Scholar 

  • Chang CY, Huang WP (2007) Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol Biol Cell 18:919–929

    Article  CAS  PubMed  Google Scholar 

  • Chiang MC, Lee YC, Huang CL, Chern Y (2005) cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J Biol Chem 280:14331–14340

    Article  CAS  PubMed  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  CAS  PubMed  Google Scholar 

  • Eskelinen EL (2008) New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol 266:207–247

    Article  CAS  PubMed  Google Scholar 

  • Geetha T, Wooten MW (2002) Structure and functional properties of the ubiquitin binding protein p62. FEBS Lett 512:19–24

    Article  CAS  PubMed  Google Scholar 

  • Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M, Ko LW (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 27:1119–1130

    Article  PubMed  Google Scholar 

  • Ho KH, Chang HE, Huang WP (2009) Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function. Autophagy 5:1–11

    Article  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M et al (2000) A ubiquitin-like system mediates protein lipidation. Nature 408:488–492

    Article  CAS  PubMed  Google Scholar 

  • Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Huang WP, Klionsky DJ (2001) Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol 152:51–64

    Article  CAS  PubMed  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000) The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151:263–276

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn W A Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206

    CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    CAS  PubMed  Google Scholar 

  • Kochl R, Hu XW, Chan EY, Tooze SA (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7:129–145

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Kominami E, Tanaka K (2006) Autophagy and neurodegeneration. Autophagy 2:315–317

    CAS  PubMed  Google Scholar 

  • Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33:517–527

    Article  CAS  PubMed  Google Scholar 

  • Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12:2085–2090

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  • Long J, Gallagher TR, Cavey JR, Sheppard PW, Ralston SH, Layfield R, Searle MS (2008) Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J Biol Chem 283:5427–5440

    Article  CAS  PubMed  Google Scholar 

  • Lunkes A, Lindenberg KS, Ben-Haiem L, Weber C, Devys D, Landwehrmeyer GB, Mandel JL, Trottier Y (2002) Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol Cell 10:259–269

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka U, Kim K, Jana NR, Doi H, Maruyama M, Mitsui K, Oyama F, Nukina N (2004) Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J Neurochem 91:57–68

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Nakaso K, Nakashima K, Ohama E (2004) Expression of ubiquitin-binding protein p62 in ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis with dementia: analysis of five autopsy cases with broad clinicopathological spectrum. Acta Neuropathol 107:359–364

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll DM, Bornkamm GW, Mautner J (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33:1250–1259

    Article  CAS  PubMed  Google Scholar 

  • Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966

    Article  CAS  PubMed  Google Scholar 

  • Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Puls A, Schmidt S, Grawe F, Stabel S (1997) Interaction of protein kinase C zeta with ZIP, a novel protein kinase C-binding protein. Proc Natl Acad Sci USA 94:6191–6196

    Article  CAS  PubMed  Google Scholar 

  • Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ (2001) Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell 7:1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068

    Article  CAS  PubMed  Google Scholar 

  • Shvets E, Fass E, Scherz-Shouval R, Elazar Z (2008) The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 121:2685–2695

    Article  CAS  PubMed  Google Scholar 

  • Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F (2004) The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611–618

    Article  CAS  PubMed  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2004) Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem 279:47704–47710

    Article  CAS  PubMed  Google Scholar 

  • Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296:1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Terni B, Rey MJ, Boluda S, Torrejon-Escribano B, Sabate MP, Calopa M, van Leeuwen FW, Ferrer I (2007) Mutant ubiquitin and p62 immunoreactivity in cases of combined multiple system atrophy and Alzheimer’s disease. Acta Neuropathol 113:403–416

    Article  PubMed  Google Scholar 

  • van der Vaart A, Mari M, Reggiori F (2008) A picky eater: exploring the mechanisms of selective autophagy in human pathologies. Traffic 9:281–289

    Article  PubMed  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Strandberg L, Lenardo MJ (2008) The selectivity of autophagy and its role in cell death and survival. Autophagy 4:567–573

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Nin-Nin Chuang, Jen-Leih Wu, and John Yu for generous support. The authors are also grateful to Dr. Yijuang Chern at Academia Sinica for providing the pcDNA3.1-Htt-(Q)109-hrGFP construct. The authors thank the Core Facility of the Institute of Cellular and Organismic Biology, Academia Sinica for technical support. DNA sequencing analyses were carried out by the Core Facilities for Basic Genomic Research located at the National Yang-Ming University Genome Center. This study was supported by the National Science Council, Taiwan (grant number NSC 96-2311-B-002-012-MY3 to W.-P. H.) and Academia Sinica (to Y.-F.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Pang Huang or Yung-Feng Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, YT., Hsu, WM., Lee, H. et al. The Evolutionarily Conserved Interaction Between LC3 and p62 Selectively Mediates Autophagy-Dependent Degradation of Mutant Huntingtin. Cell Mol Neurobiol 30, 795–806 (2010). https://doi.org/10.1007/s10571-010-9507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9507-y

Keywords

Navigation