Skip to main content
Log in

The Depletion of NAMPT Disturbs Mitochondrial Homeostasis and Causes Neuronal Degeneration in Mouse Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in the salvaging synthesis pathway of the nicotinamide adenine dinucleotide (NAD). Both NAMPT and NAD progressively decline upon aging and neurodegenerative diseases. The depletion of NAMPT induces mitochondrial dysfunction in motor neurons and causes bioenergetic stress in neurons. However, the roles of NAMPT in hippocampus neurons need to be further studied. Using floxed Nampt (Namptflox/flox) mice, we knocked out Nampt specifically in the hippocampus CA1 neurons by injecting rAAV-hSyn-Cre-APRE-pA. The depletion of NAMPT in hippocampus neurons induced cognitive deficiency in mice. Nevertheless, no morphological change of hippocampus neurons was observed with immunofluorescent imaging. Under the transmission electron microscope, we observed mitochondrial swollen and mitochondrial number decreasing in the cell body and the neurites of hippocampus neurons. In addition, we found the intracellular Aβ (6E10) increased in the hippocampus CA1 region. The intensity of Aβ42 remained unchanged, but it tended to aggregate. The GFAP level, an astrocyte marker, and the Iba1 level, a microglia marker, significantly increased in the mouse hippocampus. In the primary cultured rat neurons, NAMPT inhibition by FK866 decreased the NAD level of neurons at > 10−9 M. FK866 dropped the mitochondrial membrane potential in the cell body of neurons at > 10−9 M and in the dendrite of neurons at > 10−8 M. FK866 decreased the number and shortened the length of branches of neurons at > 10−7 M. Together, likely due to the injury of mitochondria, the decline of NAMPT level can be a critical risk factor for neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The complete datasets in the current study are available from the corresponding author on request.

References

  1. Zeng K, Yu X, Mahaman YAR, Wang JZ, Liu R, Li Y, Wang X (2022) Defective mitophagy and the etiopathogenesis of Alzheimer’s disease. Transl Neurodegener 11:32. https://doi.org/10.1186/s40035-022-00305-1

    Article  Google Scholar 

  2. Yaku K, Okabe K, Nakagawa T (2018) NAD metabolism: implications in aging and longevity. Ageing Res Rev 47:1–17. https://doi.org/10.1016/j.arr.2018.05.006

    Article  CAS  Google Scholar 

  3. Okabe K, Yaku K, Tobe K, Nakagawa T (2019) Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci 26:34. https://doi.org/10.1186/s12929-019-0527-8

    Article  Google Scholar 

  4. Clement J, Wong M, Poljak A, Sachdev P, Braidy N (2019) The plasma NAD(+) metabolome is dysregulated in “normal” aging. Rejuvenation Res 22:121–130. https://doi.org/10.1089/rej.2018.2077

    Article  CAS  Google Scholar 

  5. Ralto KM, Rhee EP, Parikh SM (2020) NAD(+) homeostasis in renal health and disease. Nat Rev Nephrol 16:99–111. https://doi.org/10.1038/s41581-019-0216-6

    Article  CAS  Google Scholar 

  6. Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, Andris F (2002) Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol 32:3225–3234. https://doi.org/10.1002/1521-4141(200211)32:11%3c3225::aid-immu3225%3e3.0.co;2-l

    Article  CAS  Google Scholar 

  7. Rajman L, Chwalek K, Sinclair DA (2018) Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab 27:529–547. https://doi.org/10.1016/j.cmet.2018.02.011

    Article  CAS  Google Scholar 

  8. Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18:416–430. https://doi.org/10.1016/j.cmet.2013.07.013

    Article  CAS  Google Scholar 

  9. Katsyuba E, Mottis A, Zietak M, De Franco F, van der Velpen V, Gariani K, Ryu D, Cialabrini L et al (2018) De novo NAD(+) synthesis enhances mitochondrial function and improves health. Nature 563:354–359. https://doi.org/10.1038/s41586-018-0645-6

    Article  CAS  Google Scholar 

  10. Xie X, Gao Y, Zeng M, Wang Y, Wei TF, Lu YB, Zhang WP (2019) Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer’s disease model mice. Metab Brain Dis 34:353–366. https://doi.org/10.1007/s11011-018-0346-8

    Article  CAS  Google Scholar 

  11. Liu L, Su X, Quinn WJ 3rd, Hui S, Krukenberg K, Frederick DW, Redpath P, Zhan L et al (2018) Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab 27(1067–1080):e5. https://doi.org/10.1016/j.cmet.2018.03.018

    Article  CAS  Google Scholar 

  12. Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD(+) in brain aging and neurodegenerative disorders. Cell Metab 30:630–655. https://doi.org/10.1016/j.cmet.2019.09.001

    Article  CAS  Google Scholar 

  13. Stein LR, Wozniak DF, Dearborn JT, Kubota S, Apte RS, Izumi Y, Zorumski CF, Imai S (2014) Expression of Nampt in hippocampal and cortical excitatory neurons is critical for cognitive function. J Neurosci 34:5800–5815. https://doi.org/10.1523/JNEUROSCI.4730-13.2014

    Article  CAS  Google Scholar 

  14. Johnson S, Wozniak DF, Imai S (2018) CA1 Nampt knockdown recapitulates hippocampal cognitive phenotypes in old mice which nicotinamide mononucleotide improves. NPJ Aging Mech Dis 4:10. https://doi.org/10.1038/s41514-018-0029-z

    Article  CAS  Google Scholar 

  15. Wang X, Zhang Q, Bao R, Zhang N, Wang Y, Polo-Parada L, Tarim A, Alemifar A et al (2017) Deletion of Nampt in projection neurons of adult mice leads to motor dysfunction, neurodegeneration, and death. Cell Rep 20:2184–2200. https://doi.org/10.1016/j.celrep.2017.08.022

    Article  CAS  Google Scholar 

  16. Lundt S, Zhang N, Li JL, Zhang Z, Zhang L, Wang X, Bao R, Cai F et al (2021) Metabolomic and transcriptional profiling reveals bioenergetic stress and activation of cell death and inflammatory pathways in vivo after neuronal deletion of NAMPT. J Cereb Blood Flow Metab 41:2116–2131. https://doi.org/10.1177/0271678X21992625

    Article  CAS  Google Scholar 

  17. Alexandris AS, Ryu J, Rajbhandari L, Harlan R, McKenney J, Wang Y, Aja S, Graham D et al (2022) Protective effects of NAMPT or MAPK inhibitors and NaR on Wallerian degeneration of mammalian axons. Neurobiol Dis 171:105808. https://doi.org/10.1016/j.nbd.2022.105808

    Article  CAS  Google Scholar 

  18. Zhang W, Xie Y, Wang T, Bi J, Li H, Zhang LQ, Ye SQ, Ding S (2010) Neuronal protective role of PBEF in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 30:1962–1971. https://doi.org/10.1038/jcbfm.2010.71

    Article  CAS  Google Scholar 

  19. Chini CCS, Tarrago MG, Chini EN (2017) NAD and the aging process: role in life, death and everything in between. Mol Cell Endocrinol 455:62–74. https://doi.org/10.1016/j.mce.2016.11.003

    Article  CAS  Google Scholar 

  20. Wen Y, Parrish JZ, He R, Zhai RG, Kim MD (2011) Nmnat exerts neuroprotective effects in dendrites and axons. Mol Cell Neurosci 48:1–8. https://doi.org/10.1016/j.mcn.2011.05.002

    Article  CAS  Google Scholar 

  21. Sasaki Y, Nakagawa T, Mao X, DiAntonio A, Milbrandt J (2016) NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD(+) depletion. Elife 5.https://doi.org/10.7554/eLife.19749

  22. Cambronne XA, Stewart ML, Kim D, Jones-Brunette AM, Morgan RK, Farrens DL, Cohen MS, Goodman RH (2016) Biosensor reveals multiple sources for mitochondrial NAD(+). Science 352:1474–1477. https://doi.org/10.1126/science.aad5168

    Article  CAS  Google Scholar 

  23. Guberovic I, Hurtado-Bages S, Rivera-Casas C, Knobloch G, Malinverni R, Valero V, Leger MM, Garcia J et al (2021) Evolution of a histone variant involved in compartmental regulation of NAD metabolism. Nat Struct Mol Biol 28:1009–1019. https://doi.org/10.1038/s41594-021-00692-5

    Article  CAS  Google Scholar 

  24. Canto C, Menzies KJ, Auwerx J (2015) NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab 22:31–53. https://doi.org/10.1016/j.cmet.2015.05.023

    Article  CAS  Google Scholar 

  25. Reddy PH, Oliver DM (2019) Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer's disease. Cells 8.https://doi.org/10.3390/cells8050488

  26. Khatoon R, Pahuja M, Parvez S (2020) Cross talk between mitochondria and other targets in Alzheimer’s disease. J Environ Pathol Toxicol Oncol 39:261–279. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2020034249

    Article  Google Scholar 

  27. Lee JH, Yang DS, Goulbourne CN, Im E, Stavrides P, Pensalfini A, Chan H, Bouchet-Marquis C et al (2022) Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat Neurosci 25:688–701. https://doi.org/10.1038/s41593-022-01084-8

    Article  CAS  Google Scholar 

  28. Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E (2020) Mitochondrial dysfunction, oxidative stress, and neuroinflammation: intertwined roads to neurodegeneration. Antioxidants (Basel) 9:647. https://doi.org/10.3390/antiox9080647

    Article  CAS  Google Scholar 

  29. Hinarejos I, Machuca-Arellano C, Sancho P, Espinos C (2020) Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 9:1020. https://doi.org/10.3390/antiox9101020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Tang C for the critical reading of this manuscript.

Funding

The work was supported by the National Key R&D Program of China (2018YFA0507700), the National Natural Science Foundation of China (81971304 and 81573400), and the Zhejiang Provincial Natural Science Foundation of China (LY18H170001, LZ20H010001).

Author information

Authors and Affiliations

Authors

Contributions

WPZ and YBL designed the research, analyzed and interpreted data, and wrote the manuscript. CS performed the behavioral tests. CC performed the AAV injection and cultured the neurons. TW and TYG prepared and genotyped the mice. CS, CC, TW, TYG, and MZ prepared the materials, performed the experiments, and collected and preliminary analyzed the data together. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yun-Bi Lu or Wei-Ping Zhang.

Ethics declarations

Ethics Approval

All animal experiments and animal husbandry were performed according to a protocol approved by the Ethics Committee of Laboratory Animal Care and Welfare, Zhejiang University School of Medicine, with the approval number ZJU2015-012–02.

Consent to Participate

Not applicable.

Consent for Publication

All authors approved the publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Chen, C., Wang, T. et al. The Depletion of NAMPT Disturbs Mitochondrial Homeostasis and Causes Neuronal Degeneration in Mouse Hippocampus. Mol Neurobiol 60, 1267–1280 (2023). https://doi.org/10.1007/s12035-022-03142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03142-5

Keywords

Navigation