Skip to main content

Advertisement

Log in

Mito-TEMPO, a Mitochondria-Targeted Antioxidant, Improves Cognitive Dysfunction due to Hypoglycemia: an Association with Reduced Pericyte Loss and Blood-Brain Barrier Leakage

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hypoglycemia is associated with cognitive dysfunction, but the exact mechanisms have not been elucidated. Our previous study found that severe hypoglycemia could lead to cognitive dysfunction in a type 1 diabetes (T1D) mouse model. Thus, the aim of this study was to further investigate whether the mechanism of severe hypoglycemia leading to cognitive dysfunction is related to oxidative stress-mediated pericyte loss and blood-brain barrier (BBB) leakage. A streptozotocin T1D model (150 mg/kg, one-time intraperitoneal injection), using male C57BL/6J mice, was used to induce hypoglycemia. Brain tissue was extracted to examine for neuronal damage, permeability of BBB was investigated through Evans blue staining and electron microscopy, reactive oxygen species and adenosine triphosphate in brain tissue were assayed, and the functional changes of pericytes were determined. Cognitive function was tested using Morris water maze. Also, an in vitro glucose deprivation model was constructed. The results showed that BBB leakage after hypoglycemia is associated with excessive activation of oxidative stress and mitochondrial dysfunction due to glucose deprivation/reperfusion. Interventions using the mitochondria-targeted antioxidant Mito-TEMPO in both in vivo and in vitro models reduced mitochondrial oxidative stress, decreased pericyte loss and apoptosis, and attenuated BBB leakage and neuronal damage, ultimately leading to improved cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Shalimova A, Graff B, Gasecki D, Wolf J, Sabisz A, Szurowska E, Jodzio K, Narkiewicz K (2019) Cognitive dysfunction in type 1 diabetes mellitus. J Clin Endocrinol Metab 104(6):2239–2249. https://doi.org/10.1210/jc.2018-01315

    Article  Google Scholar 

  2. Lacy ME, Gilsanz P, Eng C, Beeri MS, Karter AJ, Whitmer RA (2020) Severe hypoglycemia and cognitive function in older adults with type 1 diabetes: the study of longevity in diabetes (SOLID). Diabetes Care 43(3):541–548. https://doi.org/10.2337/dc19-0906

    Article  Google Scholar 

  3. Silverstein JM, Musikantow D, Puente EC, Daphna-Iken D, Bree AJ, Fisher SJ (2011) Pharmacologic amelioration of severe hypoglycemia-induced neuronal damage. Neurosci Lett 492(1):23–28. https://doi.org/10.1016/j.neulet.2011.01.045

    Article  CAS  Google Scholar 

  4. Auer RN, Olsson Y, Siesjo BK (1984) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes 33(11):1090–1098. https://doi.org/10.2337/diab.33.11.1090

    Article  CAS  Google Scholar 

  5. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117(4):910–918. https://doi.org/10.1172/JCI30077

    Article  CAS  Google Scholar 

  6. Lin L, Wu Y, Chen Z, Huang L, Wang L, Liu L (2021) Severe hypoglycemia contributing to cognitive dysfunction in diabetic mice is associated with pericyte and blood-brain barrier dysfunction. Front Aging Neurosci 13:775244. https://doi.org/10.3389/fnagi.2021.775244

    Article  CAS  Google Scholar 

  7. Toth P, Tarantini S, Csiszar A, Ungvari Z (2017) Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 312(1):H1–H20. https://doi.org/10.1152/ajpheart.00581.2016

    Article  Google Scholar 

  8. Rahmati M, Keshvari M, Mirnasouri R, Chehelcheraghi F (2021) Exercise and Urtica dioica extract ameliorate hippocampal insulin signaling, oxidative stress, neuroinflammation, and cognitive function in STZ-induced diabetic rats. Biomed Pharmacother 139:111577. https://doi.org/10.1016/j.biopha.2021.111577

    Article  CAS  Google Scholar 

  9. Rahmati M, Keshvari M, Xie W, Yang G, Jin H, Li H, Chehelcheraghi F, Li Y (2022) Resistance training and Urtica dioica increase neurotrophin levels and improve cognitive function by increasing age in the hippocampus of rats. Biomed Pharmacother 153:113306. https://doi.org/10.1016/j.biopha.2022.113306

    Article  CAS  Google Scholar 

  10. Fumoto T, Naraoka M, Katagai T, Li Y, Shimamura N, Ohkuma H (2019) The role of oxidative stress in microvascular disturbances after experimental subarachnoid hemorrhage. Transl Stroke Res 10(6):684–694. https://doi.org/10.1007/s12975-018-0685-0

    Article  CAS  Google Scholar 

  11. Barzegari A, Nouri M, Gueguen V, Saeedi N, Pavon-Djavid G, Omidi Y (2020) Mitochondria-targeted antioxidant mito-TEMPO alleviate oxidative stress induced by antimycin A in human mesenchymal stem cells. J Cell Physiol 235(7-8):5628–5636. https://doi.org/10.1002/jcp.29495

    Article  CAS  Google Scholar 

  12. Huang L, Chen Z, Chen R, Lin L, Ren L, Zhang M, Liu L (2022) Increased fatty acid metabolism attenuates cardiac resistance to beta-adrenoceptor activation via mitochondrial reactive oxygen species: A potential mechanism of hypoglycemia-induced myocardial injury in diabetes. Redox Biol 52:102320. https://doi.org/10.1016/j.redox.2022.102320

    Article  CAS  Google Scholar 

  13. Du F, Yu Q, Yan SS (2022) Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer's disease. Hum Mol Genet. https://doi.org/10.1093/hmg/ddab363

  14. Liu Z, Xu S, Ji Z, Xu H, Zhao W, Xia Z, Xu R (2020) Mechanistic study of mtROS-JNK-SOD2 signaling in bupivacaine-induced neuron oxidative stress. Aging 12(13):13463–13476. https://doi.org/10.18632/aging.103447

    Article  CAS  Google Scholar 

  15. Ni R, Cao T, Xiong S, Ma J, Fan GC, Lacefield JC, Lu Y, Le Tissier S et al (2016) Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med 90:12–23. https://doi.org/10.1016/j.freeradbiomed.2015.11.013

    Article  CAS  Google Scholar 

  16. Yang Y, Gurung B, Wu T, Wang H, Stoffers DA, Hua X (2010) Reversal of preexisting hyperglycemia in diabetic mice by acute deletion of the Men1 gene. Proc Natl Acad Sci U S A 107(47):20358–20363. https://doi.org/10.1073/pnas.1012257107

    Article  Google Scholar 

  17. Corbett D (1998) The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog Neurobiol 54(5):531–548. https://doi.org/10.1016/s0301-0082(97)00078-6

    Article  CAS  Google Scholar 

  18. Jackson DA, Michael T, Vieira de Abreu A, Agrawal R, Bortolato M, Fisher SJ (2018) Prevention of severe hypoglycemia-induced brain damage and cognitive impairment With verapamil. Diabetes 67(10):2107–2112. https://doi.org/10.2337/db18-0008

    Article  CAS  Google Scholar 

  19. Ali M, Falkenhain K, Njiru BN, Murtaza-Ali M, Ruiz-Uribe NE, Haft-Javaherian M, Catchers S, Nishimura N et al (2022) VEGF signalling causes stalls in brain capillaries and reduces cerebral blood flow in Alzheimer's mice. Brain. https://doi.org/10.1093/brain/awab387

  20. Ersahin M, Toklu HZ, Cetinel S, Yuksel M, Yegen BC, Sener G (2009) Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res 46(3):324–332. https://doi.org/10.1111/j.1600-079X.2009.00664.x

    Article  CAS  Google Scholar 

  21. Smolina K, Wotton CJ, Goldacre MJ (2015) Risk of dementia in patients hospitalised with type 1 and type 2 diabetes in England, 1998-2011: a retrospective national record linkage cohort study. Diabetologia 58(5):942–950. https://doi.org/10.1007/s00125-015-3515-x

    Article  Google Scholar 

  22. Amiel SA, Aschner P, Childs B, Cryer PE, de Galan BE, Frier BM, Gonder-Frederick L, Heller SR et al (2019) Hypoglycaemia, cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol 7(5):385–396. https://doi.org/10.1016/s2213-8587(18)30315-2

    Article  CAS  Google Scholar 

  23. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  Google Scholar 

  24. Zhao XY, Lu MH, Yuan DJ, Xu DE, Yao PP, Ji WL, Chen H, Liu WL et al (2019) Mitochondrial dysfunction in neural injury. Front Neurosci 13:30. https://doi.org/10.3389/fnins.2019.00030

    Article  Google Scholar 

  25. Chen WJ, Du JK, Hu X, Yu Q, Li DX, Wang CN, Zhu XY, Liu YJ (2017) Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior. Physiol Behav 182:54–61. https://doi.org/10.1016/j.physbeh.2017.09.024

    Article  CAS  Google Scholar 

  26. McCrimmon RJ (2021) Consequences of recurrent hypoglycaemia on brain function in diabetes. Diabetologia 64(5):971–977. https://doi.org/10.1007/s00125-020-05369-0

    Article  Google Scholar 

  27. Paloczi J, Varga ZV, Hasko G, Pacher P (2018) Neuroprotection in oxidative stress-related neurodegenerative diseases: role of endocannabinoid system modulation. Antioxid Redox Signal 29(1):75–108. https://doi.org/10.1089/ars.2017.7144

    Article  CAS  Google Scholar 

  28. Sharma P, Kumar S (2018) Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: pivotal role of superoxide dismutase (SOD). Cell Oncol (Dordr) 41(6):637–650. https://doi.org/10.1007/s13402-018-0398-0

    Article  CAS  Google Scholar 

  29. Kim JH, Lee S, Cho EJ (2019) Acer okamotoanum and isoquercitrin improve cognitive function via attenuation of oxidative stress in high fat diet- and amyloid beta-induced mice. Food Funct 10(10):6803–6814. https://doi.org/10.1039/c9fo01694e

    Article  CAS  Google Scholar 

  30. Chen LY, Renn TY, Liao WC, Mai FD, Ho YJ, Hsiao G, Lee AW et al (2017) Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity. J Pineal Res 63(2). https://doi.org/10.1111/jpi.12417

  31. Ceriello A, Novials A, Ortega E, Canivell S, La Sala L, Pujadas G, Bucciarelli L, Rondinelli M et al (2013) Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes. Diabetes Care 36(12):4104–4108. https://doi.org/10.2337/dc13-0750

    Article  CAS  Google Scholar 

  32. Li C, Sun H, Xu G, McCarter KD, Li J (1985) Mayhan WG (2018) Mito-Tempo prevents nicotine-induced exacerbation of ischemic brain damage. J Appl Physiol 125(1):49–57. https://doi.org/10.1152/japplphysiol.01084.2017

    Article  CAS  Google Scholar 

  33. Bogush M, Heldt NA, Persidsky Y (2017) Blood brain barrier injury in diabetes: unrecognized effects on brain and cognition. J Neuroimmune Pharmacol 12(4):593–601. https://doi.org/10.1007/s11481-017-9752-7

    Article  Google Scholar 

  34. Taccola C, Barneoud P, Cartot-Cotton S, Valente D, Schussler N, Saubaméa B, Chasseigneaux S, Cochois V et al (2021) Modifications of physical and functional integrity of the blood-brain barrier in an inducible mouse model of neurodegeneration. Neuropharmacology 191. https://doi.org/10.1016/j.neuropharm.2021.108588

  35. Noe CR, Noe-Letschnig M, Handschuh P, Noe CA, Lanzenberger R (2020) Dysfunction of the blood-brain barrier—a key step in neurodegeneration and dementia. Front Aging Neurosci 12:185. https://doi.org/10.3389/fnagi.2020.00185

    Article  CAS  Google Scholar 

  36. Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X (2015) Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke 46(6):1681–1689. https://doi.org/10.1161/STROKEAHA.115.009099

    Article  CAS  Google Scholar 

  37. Hu H, Doll DN, Sun J, Lewis SE, Wimsatt JH, Kessler MJ, Simpkins JW, Ren X (2016) Mitochondrial impairment in cerebrovascular endothelial cells is involved in the correlation between body temperature and stroke severity. Aging Dis 7(1):14–27. https://doi.org/10.14336/AD.2015.0906

    Article  Google Scholar 

  38. Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA et al (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21(13):3666–3676. https://doi.org/10.1096/fj.07-8329com

    Article  CAS  Google Scholar 

  39. Nation DA, Sweeney MD, Montagne A, Sagare AP, D'Orazio LM, Pachicano M, Sepehrband F, Nelson AR et al (2019) Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med 25(2):270–276. https://doi.org/10.1038/s41591-018-0297-y

    Article  CAS  Google Scholar 

  40. Banks WA, Rhea EM (2021) The blood-brain barrier, oxidative stress, and insulin resistance. Antioxidants (Basel) 10(11). https://doi.org/10.3390/antiox10111695

  41. Price TO, Eranki V, Banks WA, Ercal N, Shah GN (2012) Topiramate treatment protects blood-brain barrier pericytes from hyperglycemia-induced oxidative damage in diabetic mice. Endocrinology 153(1):362–372. https://doi.org/10.1210/en.2011-1638

    Article  CAS  Google Scholar 

  42. Turner RJ, Sharp FR (2016) Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 10:56. https://doi.org/10.3389/fncel.2016.00056

    Article  CAS  Google Scholar 

  43. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584):1186–1190. https://doi.org/10.1126/science.1073634

    Article  CAS  Google Scholar 

  44. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.001

    Article  CAS  Google Scholar 

  45. Salameh TS, Shah GN, Price TO, Hayden MR, Banks WA (2016) Blood-brain barrier disruption and neurovascular unit dysfunction in diabetic mice: protection with the mitochondrial carbonic anhydrase inhibitor topiramate. J Pharmacol Exp Ther 359(3):452–459. https://doi.org/10.1124/jpet.116.237057

    Article  CAS  Google Scholar 

  46. Ceriello A, Novials A, Ortega E, Canivell S, La Sala L, Pujadas G, Esposito K, Giugliano D et al (2013) Glucagon-like peptide 1 reduces endothelial dysfunction, inflammation, and oxidative stress induced by both hyperglycemia and hypoglycemia in type 1 diabetes. Diabetes Care 36(8):2346–2350. https://doi.org/10.2337/dc12-2469

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Public Technology Service Center Fujian Medical University for providing technical support in laser confocal microscopy. Thanks to the support of my family, especially my husband Fu yang, who gave me a lot of encouragement during this study and let me finish the experiment without worries.

Funding

This work was supported by the Fujian Science and Technology Innovation Joint Fund Project (2017Y9060), the Financial Department Special Funds of Fujian Province (2018B041), the Joint Funds for the innovation of science and Technology, Fujian province (2019Y9062), Shanghai Health and Medical Development Foundation (DMRFP_I_03), and the Startup Fund for Scientific Research of Fujian Medical University (2020QH2022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lu Lin, Zhou Chen, and Cuihua Huang. The first draft of the manuscript was written by Lin Lu, and all authors commented on previous versions of the manuscript. Yubin Wu, Lishan Huang, Lijing Wang, and Sujie Ke participated in the separation experiment. Libin Liu and conceived and designed the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Libin Liu.

Ethics declarations

Ethics Approval

The animal study protocol was approved by the Fujian Animal Research Ethics Committee (protocol code FJMU IACUC 2021-0029).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Chen, Z., Huang, C. et al. Mito-TEMPO, a Mitochondria-Targeted Antioxidant, Improves Cognitive Dysfunction due to Hypoglycemia: an Association with Reduced Pericyte Loss and Blood-Brain Barrier Leakage. Mol Neurobiol 60, 672–686 (2023). https://doi.org/10.1007/s12035-022-03101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03101-0

Keywords

Navigation