Skip to main content

Advertisement

Log in

Discovery of Molecular Networks of Neuroprotection Conferred by Brahmi Extract in Aβ42-Induced Toxicity Model of Drosophila melanogaster Using a Quantitative Proteomic Approach

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulation of Aβ42 peptides forming plaque in various regions of the brain is a hallmark of Alzheimer’s disease (AD) progression. However, to date, there is no effective management strategy reported for attenuation of Aβ42-induced toxicity in the early stages of the disease. Alternate medicinal systems such as Ayurveda in the past few decades show promising results in the management of neuronal complications. Medhya Rasayana such as Brahmi is known for its neuroprotective properties via resolving memory-related issues, while the underlying molecular mechanism of the same remains unclear. In the present study, we aimed to understand the neuroprotective effects of the aqueous extract of Bacopa monnieri and Centella asiatica (both commonly known as Brahmi) against the Aβ42 expressing model of the Drosophila melanogaster. By applying a quantitative proteomics approach, the study identified > 90% of differentially expressed proteins from Aβ42 expressing D. melanogaster were either restored to their original expression pattern or showed no change in expression pattern upon receiving either Brahmi extract treatment. The Brahmi restored proteins were part of neuronal pathways associated with cell cycle re-entry, apoptosis, and mitochondrial dynamics. The neuroprotective effect of Brahmi was also validated by negative geotaxis behavioral analysis suggesting its protective role against behavioral deficits exerted by Aβ42 toxicity. We believe that these discoveries will provide a platform for developing novel therapeutics for AD management by deciphering molecular targets of neuroprotection conferred by an aqueous extract of Bacopa monnieri or Centella asiatica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The MS/MS raw data and the PD search data along with results files were submitted to ProteomeXchange Consortium via the PRIDE repository [70] with data set identifier PXD027101.

Abbreviations

AD:

Alzheimer’s disease

WT:

Wild-type/Canton S flies

BM:

Bacopa monnieri Extract

CA:

Centella asiatica Extract

Aβ42:

Amyloid beta peptide with 42 amino acids

WT + BM:

WT flies fed on Bacopa monnieri extract

WT + CA:

WT flies fed on Centella asiatica extract

42 + BM:

Aβ42 flies fed on Bacopa monnieri extract

42 + CA:

Aβ42 flies fed on Centella asiatica extract

TMT:

Tandem mass tags

LC–MS/MS:

Tandem mass spectrometry

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

ACN:

Anhydrous acetonitrile

TFA:

Trifluoroacetic acid

HCD:

Higher-energy collision dissociation

PD 2.2:

Proteome Discoverer version 2.2

FDR:

False discovery rate

PSM:

Peptide-spectrum matches

FC:

Fold change

GO:

Gene Ontology

ETC:

Etectron transport chain

PPI:

Protein-protein interaction network

References

  1. Gbdn C (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden Of Disease Study 2016. Lancet Neurol 18(5):459–480

    Article  Google Scholar 

  2. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s Disease. Lancet 377(9770):1019–1031

    Article  Google Scholar 

  3. Ma D, Dw D (2019) The neuropathological diagnosis of Alzheimer’s Disease. Mol Neurodegener 14(1):32

    Article  Google Scholar 

  4. Tsolaki M, Kokarida K, Iakovidou V, Stilopoulos E, Meimaris J, Kazis A (2001) Extrapyramidal symptoms and signs in Alzheimer’s disease: prevalence and correlation with the first symptom. Am J Alzheimers Dis Other Demen 16(5):268–278

    Article  CAS  Google Scholar 

  5. Tosto G, Se M, Se H, Mayeux R (2015) Pattern of extrapyramidal signs in Alzheimer’s disease. J Neurol 262(11):2548–2556

    Article  CAS  Google Scholar 

  6. Sharma R, Kuca K, Nepovimova E, Kabra A, Mm R, Pk P (2019) Traditional ayurvedic and herbal remedies for Alzheimer’s disease: from bench to bedside. Expert Rev Neurother 19(5):359–374

    Article  CAS  Google Scholar 

  7. Sc D, Pk M, Subbannayya Y, Pervaje R, Tsk P (2020) Molecular targets from traditional medicines for neuroprotection in human neurodegenerative diseases. OMICS 24(7):394–403

    Article  Google Scholar 

  8. Karthikkeyan G, Najar MA, Pervaje R, Pervaje SK, Modi PK, Prasad TSK (2020) Identification of molecular network associated with neuroprotective effects of Yashtimadhu (Glycyrrhiza Glabra L.) by quantitative proteomics of rotenone-induced Parkinson’s disease model. Acs Omega. 5(41):26611–25

    Article  CAS  Google Scholar 

  9. Mukherjee S, Dugad S, Bhandare R, Pawar N, Jagtap S, Pk P et al (2011) Evaluation of comparative free-radical quenching potential of Brahmi (Bacopa monnieri) and Mandookparni (Centella asiatica). Ayu 32(2):258–264

    Article  Google Scholar 

  10. Nagarajan M, Gr K, Ks K, Venkatasubramanian P (2015) Abhava Pratinidhi Dravya: a comparative phytochemistry of Ativisha, Musta and related species. J Ayurveda Integr Med 6(1):53–63

    Article  CAS  Google Scholar 

  11. Dubey T, Chinnathambi S (2019) Brahmi (Bacopa monnieri): an Ayurvedic herb against the Alzheimer’s disease. Arch Biochem Biophys 676:108153

    Article  CAS  Google Scholar 

  12. Ganguly G, Chakrabarti S, Chatterjee U, Saso L (2017) Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer’s disease and Parkinson’s disease. Drug Des Devel Ther 11:797–810

    Article  CAS  Google Scholar 

  13. Mangleburg Cg WuT, Hk Y, Guo C, Yc H, Dm D et al (2020) Integrated analysis of the aging brain transcriptome and proteome in tauopathy. Mol Neurodegener 15(1):56

    Article  Google Scholar 

  14. Sk S, Gaur R, Kumar A, Fatima R, Mishra L, Srikrishna S (2014) The flavonoid derivative 2-(4′ benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Abeta42-induced neurodegeneration in transgenic drosophila: insights from in silico and in vivo studies. Neurotox Res 26(4):331–350

    Article  Google Scholar 

  15. Srivastav S, Fatima M, Ac M (2018) Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochem Int 121:98–107

    Article  CAS  Google Scholar 

  16. Hosamani R, Muralidhara. (2009) Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. Neurotoxicology 30(6):977–985

    Article  CAS  Google Scholar 

  17. Sc D, Ma N, Sv R, Tsk P (2022) Abeta42 expressing drosophila melanogaster model for Alzheimer’s disease: quantitative proteomics identifies altered protein dynamics of relevance to neurodegeneration. OMICS 26(1):51–63

    Article  Google Scholar 

  18. Kumar S, Kumar M, Ekka R, Dvorin Jd, As P, Ak M et al (2017) Pfcdpk1 mediated signaling in erythrocytic stages of Plasmodium falciparum. Nat Commun 8(1):63

    Article  CAS  Google Scholar 

  19. Ma N, Pk M, Ramesh P, Sidransky D, Gowda H, Tsk P et al (2021) Molecular profiling associated with calcium/calmodulin-dependent protein kinase kinase 2 (Camkk2)-mediated carcinogenesis in gastric cancer. J Proteome Res 20(5):2687–2703

    Article  Google Scholar 

  20. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) Gorilla: a tool for discovery and visualization of enriched go terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  Google Scholar 

  21. Szklarczyk D, Al G, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) String V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    Article  CAS  Google Scholar 

  22. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48(D1):D498–D503

    CAS  Google Scholar 

  23. Cerejeira J, Lagarto L, Eb M-L (2012) Behavioral and psychological symptoms of dementia. Front Neurol 3:73

    Article  CAS  Google Scholar 

  24. Cw H, Klein T, Cassidy L, Linke D, Lange S, Anders U et al (2016) Comparative proteome analysis in schizosaccharomyces pombe identifies metabolic targets to improve protein production and secretion. Mol Cell Proteomics 15(10):3090–3106

    Article  Google Scholar 

  25. Kaddurah-Daouk R, Zhu H, Sharma S, Bogdanov M, Sg R, Matson W et al (2013) Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiatry 3:E244

    Article  CAS  Google Scholar 

  26. Yan X, Hu Y, Wang B, Wang S, Zhang X (2020) Metabolic dysregulation contributes to the progression of Alzheimer’s disease. Front Neurosci 14:530219

    Article  Google Scholar 

  27. Hk A, Devi L (2007) Amyloid precursor protein and mitochondrial dysfunction in Alzheimer’s disease. Neuroscientist 13(6):626–638

    Article  Google Scholar 

  28. Aj R, Gl H, Rastogi N, Hodges M, Doyle M, Davies S et al (2020) Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator Pfkfb3. Cancer Res 80(5):937–949

    Article  Google Scholar 

  29. Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M (2015) Impaired mitochondrial energy metabolism in Alzheimer’s disease: impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 131:1–20

    Article  CAS  Google Scholar 

  30. Liu J, Li L (2019) Targeting autophagy for the treatment of Alzheimer’s disease: challenges and opportunities. Front Mol Neurosci 12:203

    Article  CAS  Google Scholar 

  31. Ajoolabady A, Aslkhodapasandhokmabad H, Henninger N, Lj D, Nikanfar M, Nourazarian A et al (2021) Targeting autophagy in neurodegenerative diseases: from molecular mechanisms to clinical therapeutics. Clin Exp Pharmacol Physiol 48(7):943–953

    Article  CAS  Google Scholar 

  32. Chen X, Kondo K, Motoki K, Homma H, Okazawa H (2015) Fasting activates macroautophagy in neurons of Alzheimer’s disease mouse model but is insufficient to degrade amyloid-beta. Sci Rep 5:12115

    Article  CAS  Google Scholar 

  33. Rouillard Ad, Gundersen Gw, Fernandez Nf, Wang Z, Monteiro Cd, Mcdermott Mg, Et Al. (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database: The Journal of Biological Databases and Curation. https://doi.org/10.1093/database/baw100

  34. Se H, Fox H, Af W, Hayward C, Jm S, Lj W et al (2007) A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition. Bmc Genet 8:43

    Article  Google Scholar 

  35. Hosp F, Vossfeldt H, Heinig M, Vasiljevic D, Arumughan A, Wyler E et al (2015) Quantitative interaction proteomics of neurodegenerative disease proteins. Cell Rep 11(7):1134–1146

    Article  CAS  Google Scholar 

  36. Bishof I, Dammer EB, Duong DM, Kundinger SR, Gearing M, Lah JJ et al (2018) RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer’s disease. J Biol Chem. 293(28):11047–66

    Article  CAS  Google Scholar 

  37. Le H, Lg J, Blau N, Ra W, Cb L, Jm H et al (2006) Dopa-responsive dystonia and early-onset Parkinson’s disease in a patient with GTP cyclohydrolase I deficiency? Mov Disord 21(5):679–682

    Article  Google Scholar 

  38. Sanfilippo C, Musumeci G, Kazakova M, Mazzone V, Castrogiovanni P, Imbesi R et al (2021) Gng13 is a potential marker of the state of health of Alzheimer’s disease patients’ Cerebellum. J Mol Neurosci 71(5):1046–1060

    Article  CAS  Google Scholar 

  39. Wang Y, Thinakaran G, Kar S (2014) Overexpression of the Igf-Ii/M6p receptor in mouse fibroblast cell lines differentially alters expression profiles of genes involved in Alzheimer’s disease-related pathology. PLoS ONE 9(5):E98057

    Article  Google Scholar 

  40. Olah J, Vincze O, Virok D, Simon D, Bozso Z, Tokesi N et al (2011) Interactions of pathological hallmark proteins: tubulin polymerization promoting protein/P25, beta-amyloid, and alpha-synuclein. J Biol Chem 286(39):34088–34100

    Article  CAS  Google Scholar 

  41. Kant S, Eg S, Ce J, Baird A, Silverberg Gd (2018) Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers Cns 15(1):34

    Article  CAS  Google Scholar 

  42. Gallart-Palau X, Guo X, Serra A, Sk S (2020) Alzheimer’s disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimers Res Ther 12(1):54

    Article  CAS  Google Scholar 

  43. Ulbrich S, Janning P, Seidel R, Matschke J, Gonsberg A, Jung S et al (2018) Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (Prpc) in Alzheimer’s disease. PLoS ONE 13(5):E0197659

    Article  Google Scholar 

  44. Chen S, Ff Lu, Seeman P, Liu F (2012) Quantitative proteomic analysis of human substantia nigra in Alzheimer’s disease, Huntington’s disease and multiple sclerosis. Neurochem Res 37(12):2805–2813

    Article  CAS  Google Scholar 

  45. Ba C, Galvan V, Banwait S, Gorostiza O, Cr L, Williams T et al (2005) A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Ann Neurol 58(2):277–289

    Article  Google Scholar 

  46. Haenig C, Atias N, Ak T, Mazza A, Schaefer Mh, Russ J et al (2020) Interactome mapping provides a network of neurodegenerative disease proteins and uncovers widespread protein aggregation in affected brains. Cell Rep 32(7):108050

    Article  CAS  Google Scholar 

  47. Forestier A, Douki T, De Rosa V, Beal D, Rachidi W (2015) Combination of abeta secretion and oxidative stress in an Alzheimer-like cell line leads to the over-expression of the nucleotide excision repair proteins Ddb2 and Xpc. Int J Mol Sci 16(8):17422–17444

    Article  CAS  Google Scholar 

  48. Kulkarni R, Kj G, Kumar A (2012) Nootropic herbs (Medhya Rasayana) in Ayurveda: an update. Pharmacogn Rev 6(12):147–153

    Article  Google Scholar 

  49. Vt S, Sj N, Js S (2021) Neuroprotection with Bacopa monnieri-a review of experimental evidence. Mol Biol Rep 48(3):2653–2668

    Article  Google Scholar 

  50. Hm S, Cryar A, Kerr F, Sutherland D, La G, Jpc V et al (2020) Dynamic changes in the brain protein interaction network correlates with progression of Abeta42 pathology in drosophila. Sci Rep 10(1):18517

    Article  Google Scholar 

  51. Gk S, Muralidhara BM (2011) Exploring the role of “Brahmi” (Bacopa monnieri and Centella asiatica) in brain function and therapy. Recent Pat Endocr Metab Immune Drug Discov 5(1):33–49

    Article  Google Scholar 

  52. Meena H, Hk P, Pandey P, Mc A, Ahmed Z (2012) Evaluation of antioxidant activity of two important memory enhancing medicinal plants Baccopa monnieri and Centella asiatica. Indian J Pharmacol 44(1):114–117

    Article  Google Scholar 

  53. Dg Matthews, Caruso M, Cf Murchison, Jy Zhu, Km Wright, Cj Harris et al (2019) Centella asiatica improves memory and promotes antioxidative signaling in 5xfad mice. Antioxidants (Basel) 8(12):630. https://doi.org/10.3390/antiox8120630

    Article  CAS  Google Scholar 

  54. Joshi H, Parle M (2006) Brahmi rasayana improves learning and memory in mice. Evid Based Complement Alternat Med 3(1):79–85

    Article  Google Scholar 

  55. Ks C, Nr T, Rr T, Rs S (2017) Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer’s disease. Ann Neurosci 24(2):111–122

    Article  Google Scholar 

  56. Fx L, Dm M, Ac R, Pinteaux E, Boutin H (2017) Early changes in extracellular matrix in Alzheimer’s disease. Neuropathol Appl Neurobiol 43(2):167–182

    Article  Google Scholar 

  57. Hetz C, Mollereau B (2014) Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 15(4):233–249

    Article  CAS  Google Scholar 

  58. La H, Dhanasekaran M, Ar H, Ka Y, Riggs M, Bv M (2006) Bacopa monniera extract reduces amyloid levels in PSAPP mice. J Alzheimers Dis 9(3):243–251

    Article  Google Scholar 

  59. Dhanasekaran M, La H, Ar H, Tharakan B, Jw P, Ka Y et al (2009) Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer’s disease animal model. Phytother Res 23(1):14–19

    Article  Google Scholar 

  60. Arora R, Kumar R, Agarwal A, Reeta Kh, Yk G (2018) Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: in vitro and in vivo study. Biomed Pharmacother 105:1344–1352

    Article  CAS  Google Scholar 

  61. Gupta I, Singh K, Nk V, Khan S (2018) Delineating crosstalk mechanisms of the ubiquitin proteasome system that regulate apoptosis. Front Cell Dev Biol 6:11

    Article  Google Scholar 

  62. Harris Ld, Jasem S, Jdf L (2020) The ubiquitin system in Alzheimer’s disease. Adv Exp Med Biol 1233:195–221

    Article  CAS  Google Scholar 

  63. Velentzas AD, Katarachia SA, Sagioglou NE, Tsioka MM, Anagnostopoulos AK, Mpakou VE et al (2020) Proteomic mapping of Drosophila transgenic elav.L-Gal4/+ brain as a tool to illuminate neuropathology mechanisms. Sci Rep. 10(1):5430

    Article  Google Scholar 

  64. Ji Ch, Yt K (2017) Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Mol Cells 40(7):441–449

    CAS  Google Scholar 

  65. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Et Al. (2016) The genecards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 54:1 30 1–13.

  66. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    Article  CAS  Google Scholar 

  67. Rl B, Az S, Bj S, Larossa G, Sachs R, Af F et al (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25(34):7709–7717

    Article  Google Scholar 

  68. Wang X, Huang T, Bu G, Xu H (2014) Dysregulation of protein trafficking in neurodegeneration. Mol Neurodegener 9:31

    Article  CAS  Google Scholar 

  69. Atamna H, Frey Wh 2nd (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7(5):297–310

    Article  CAS  Google Scholar 

  70. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Dj K et al (2019) The pride database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47(D1):D442–D450

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka, for support to the Center for Systems Biology and Molecular Medicine at Yenepoya (Deemed to be University), Mangalore, under the Biotechnology Skill Enhancement Programme in Multiomics Technology (BiSEP GO ITD 02MDA2017). The authors also thank Yenepoya (Deemed to be University) for access to mass spectrometry instrumentation. Sayali C. Deolankar and Poornima Ramesh are the recipients of Senior Research Fellowships from the Indian Council of Medical Research (ICMR), Government of India. Mohd. Altaf Najar and Anagha Kanichery are the recipients of Senior Research Fellowships from the University Grants Commission (UGC), Government of India. Raghu SV is grateful to DBT-Ramalingaswami Re-entry Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. TSKP and SPVR conceptualized the study, designed the experiments, and critically reviewed the manuscript. SPVR, AKK, and SCD performed fly treatment, experiment, and protein extraction from fly heads. SCD, MAN, PR, and AK carried out proteomics sample preparation, fractionation, and mass spectrometry. SCD and MAN analyzed mass spectrometry-based data. SCD prepared figures and tables, and wrote the manuscript. All the authors read and revised the manuscript for important intellectual content and approved the final manuscript.

Corresponding authors

Correspondence to Shamprasad Varija Raghu or T. S. Keshava Prasad.

Ethics declarations

Ethics Approval

This study was approved by Yenepoya Ethics Committee-1, Yenepoya (Deemed to be University), with Ethical clearance protocol no. YEC-1/2021/006.

Research Involving Human Participants and/or Animals

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deolankar, S.C., Najar, M.A., Ramesh, P. et al. Discovery of Molecular Networks of Neuroprotection Conferred by Brahmi Extract in Aβ42-Induced Toxicity Model of Drosophila melanogaster Using a Quantitative Proteomic Approach. Mol Neurobiol 60, 303–316 (2023). https://doi.org/10.1007/s12035-022-03066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03066-0

Keywords

Navigation