Skip to main content

Advertisement

Log in

Direct Current Electric Field Coordinates the Migration of BV2 Microglia via ERK/GSK3β/Cofilin Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Direct current electric field (DCEF) steers the migration of various neural cells. Microglia, as macrophage of the central nervous system (CNS), however, have not been reported to engage in electrotaxis. Here, we applied electric fields to an in vitro environment and found directional migration of BV2 microglia toward the cathode, in a DCEF strength-dependent manner. Transcriptome analysis then revealed significant changes in the mitogen-activated protein kinase cascades. In terms of mechanism, DCEF coordinated microglia movement by regulating the ERK/GSK3β/cofilin signaling pathway, and PMA (protein kinase C activator) reversed cell migration through intervention of the ERK/GSK3β/cofilin axis. Meanwhile, LiCl (GSK3β inhibitor) showed similar functions to PMA in the electrotaxis of microglia. Furthermore, pharmacological and genetic suppression of GSK3β or cofilin also modulated microglia directional migration under DCEF. Collectively, we discovered the electrotaxis of BV2 microglia and the essential role of the ERK/GSK3β/cofilin axis in regulating cell migration via modulation of F-actin redistribution. This research highlights new insight toward mediating BV2 directional migration and provides potential direction for novel therapeutic strategies of CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

TEPs:

Transepithelial electrical potentials

ADF:

Actin depolymerizing factor

DCEF:

Direct current electric field

CNS:

Central nervous system

NGS:

Next-generation RNA sequencing

hNSCs:

Human neural stem cells

MAPK:

Mitogen activated protein kinases

ERK:

Extracellular signal-regulated kinase

GSK3β:

Glycogen synthase kinase-3β

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

PMA:

Phorbol-12-myristate-13-acetate

DMSO:

Dimethyl sulfoxide

cDNA:

Complementary DNA

cRNA:

Complementary RNA

KEGG:

Kyoto encyclopedia of genes and genomes

GSEA:

Gene set enrichment analysis

DEPC:

Diethylpyrocarbonate

PBS:

Phosphate-buffered saline

RT:

Room temperature

References

  1. Lencer E, Prekeris R, Artinger KB (2021) Single-cell RNA analysis identifies pre-migratory neural crest cells expressing markers of differentiated derivatives. Elife 10:e66078. https://doi.org/10.7554/eLife.66078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang Q, Vazquez AL, Cui XT (2021) Long-term in vivo two-photon imaging of the neuroinflammatory response to intracortical implants and micro-vessel disruptions in awake mice. Biomaterials 276:121060. https://doi.org/10.1016/j.biomaterials.2021.121060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meng XT, Du YS, Dong ZY, Wang GQ, Dong B, Guan XW, Yuan YZ, Pan H et al (2020) Combination of electrical stimulation and bFGF synergistically promote neuronal differentiation of neural stem cells and neurite extension to construct 3D engineered neural tissue. J Neural Eng 17(5):056048. https://doi.org/10.1088/1741-2552/abaac0

    Article  PubMed  Google Scholar 

  4. Gokoffski KK, Jia X, Shvarts D, Xia G, Zhao M (2019) Physiologic electrical fields direct retinal ganglion cell axon growth in vitro. Invest Ophthalmol Vis Sci 60(10):3659–3668. https://doi.org/10.1167/iovs.18-25118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mehta AS, Ha P, Zhu K, Li S, Ting K, Soo C, Zhang X, Zhao M (2021) Physiological electric fields induce directional migration of mammalian cranial neural crest cells. Dev Biol 471:97–105. https://doi.org/10.1016/j.ydbio.2020.12.011

    Article  CAS  PubMed  Google Scholar 

  6. Yang C, Wang L, Weng W, Wang S, Ma Y, Mao Q, Gao G, Chen R et al (2019) Steered migration and changed morphology of human astrocytes by an applied electric field. Exp Cell Res 374(2):282–289. https://doi.org/10.1016/j.yexcr.2018.11.029

    Article  CAS  PubMed  Google Scholar 

  7. Feng JF, Liu J, Zhang L, Jiang JY, Russell M, Lyeth BG, Nolta JA, Zhao M (2017) Electrical guidance of human stem cells in the rat brain. Stem Cell Rep 9(1):177–189. https://doi.org/10.1016/j.stemcr.2017.05.035

    Article  Google Scholar 

  8. Clancy H, Pruski M, Lang B, Ching J, McCaig CD (2021) Glioblastoma cell migration is directed by electrical signals. Exp Cell Res 406(1):112736. https://doi.org/10.1016/j.yexcr.2021.112736

    Article  CAS  PubMed  Google Scholar 

  9. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A et al (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442(7101):457–460. https://doi.org/10.1038/nature04925

    Article  CAS  PubMed  Google Scholar 

  10. Feng JF, Liu J, Zhang XZ, Zhang L, Jiang JY, Nolta J, Zhao M (2012) Guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem cells 30(2):349–355. https://doi.org/10.1002/stem.779

    Article  CAS  PubMed  Google Scholar 

  11. Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216(2):527–535. https://doi.org/10.1002/jcp.21431

    Article  CAS  PubMed  Google Scholar 

  12. Zhu B, Nicholls M, Gu Y, Zhang G, Zhao C, Franklin RJ, Song B (2016) Electric signals regulate the directional migration of oligodendrocyte progenitor cells (OPCs) via beta1 integrin. Int J Mol Sci 17(11):1948. https://doi.org/10.3390/ijms17111948

    Article  CAS  PubMed Central  Google Scholar 

  13. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19(1):20–27. https://doi.org/10.1038/nn.4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glass R, Synowitz M (2014) CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol 128(3):347–362. https://doi.org/10.1007/s00401-014-1274-2

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez-Baeza A, Reina-de la Torre F, Poca A, Marti M, Garnacho A (2003) Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat Rec A Discov Mol Cell Evol Biol 273(1):583–593. https://doi.org/10.1002/ar.a.10069

    Article  PubMed  Google Scholar 

  16. Beschorner R, Nguyen TD, Gozalan F, Pedal I, Mattern R, Schluesener HJ, Meyermann R, Schwab JM (2002) CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol 103(6):541–549. https://doi.org/10.1007/s00401-001-0503-7

    Article  CAS  PubMed  Google Scholar 

  17. Feng J, Jiang J (2020) Traumatic brain injury in 2019: databases, biomarkers, and stratified treatment. Lancet Neurol 19(1):5–7. https://doi.org/10.1016/s1474-4422(19)30447-8

    Article  PubMed  Google Scholar 

  18. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG (2015) The ischemic environment drives microglia and macrophage function. Front Neurol 6:81. https://doi.org/10.3389/fneur.2015.00081

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128(2):191–213. https://doi.org/10.1007/s00401-014-1310-2

    Article  CAS  PubMed  Google Scholar 

  20. Hallett PJ, Engelender S, Isacson O (2019) Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson’s disease. J Neuroinflammation 16(1):153. https://doi.org/10.1186/s12974-019-1532-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li F, Wang H, Li L, Huang C, Lin J, Zhu G, Chen Z, Wu N et al (2012) Superoxide plays critical roles in electrotaxis of fibrosarcoma cells via activation of ERK and reorganization of the cytoskeleton. Free Radic Biol Med 52(9):1888–1896. https://doi.org/10.1016/j.freeradbiomed.2012.02.047

    Article  CAS  PubMed  Google Scholar 

  22. Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784. https://doi.org/10.1038/ni1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2(10):769–776. https://doi.org/10.1038/35096075

    Article  CAS  PubMed  Google Scholar 

  24. Shi H, Fang Y, Huang L, Gao L, Lenahan C, Okada T, Travis ZD, Xie S et al (2021) Activation of galanin receptor 1 with M617 attenuates neuronal apoptosis via ERK/GSK-3β/TIP60 pathway after subarachnoid hemorrhage in rats. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. https://doi.org/10.1007/s13311-021-01066-x

    Article  Google Scholar 

  25. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, Lötvall J, Nakagama H et al (2015) Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 6:6716. https://doi.org/10.1038/ncomms7716

    Article  CAS  PubMed  Google Scholar 

  26. Rom S, Fan S, Reichenbach N, Dykstra H, Ramirez SH, Persidsky Y (2012) Glycogen synthase kinase 3β inhibition prevents monocyte migration across brain endothelial cells via Rac1-GTPase suppression and down-regulation of active integrin conformation. Am J Pathol 181(4):1414–1425. https://doi.org/10.1016/j.ajpath.2012.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang H, Bradley MJ, Cao W, Zhou K, Grintsevich EE, Michelot A, Sindelar CV, Hochstrasser M et al (2014) Site-specific cation release drives actin filament severing by vertebrate cofilin. Proc Natl Acad Sci USA 111(50):17821–17826. https://doi.org/10.1073/pnas.1413397111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song B, Gu Y, Pu J, Reid B, Zhao Z, Zhao M (2007) Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat Protoc 2(6):1479–1489. https://doi.org/10.1038/nprot.2007.205

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Gu W, Du J, Reid B, Deng X, Liu Z, Zong Z, Wang H et al (2012) Electric fields guide migration of epidermal stem cells and promote skin wound healing. Wound Repair Regen 6:840–851. https://doi.org/10.1111/j.1524-475X.2012.00829.x

    Article  Google Scholar 

  30. Li J, Zhang Z, Wang J, Du S, Yao D, Cao R, Cui S (2020) Protein kinase Cα promotes proliferation and migration of Schwann cells by activating ERK signaling pathway. Neuroscience 433:94–107. https://doi.org/10.1016/j.neuroscience.2020.03.007

    Article  CAS  PubMed  Google Scholar 

  31. Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421(6924):753–756. https://doi.org/10.1038/nature01423

    Article  CAS  PubMed  Google Scholar 

  32. Chernyavsky AI, Arredondo J, Karlsson E, Wessler I, Grando SA (2005) The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J Biol Chem 280(47):39220–39228. https://doi.org/10.1074/jbc.M504407200

    Article  CAS  PubMed  Google Scholar 

  33. Nahman S, Belmaker RH, Azab AN (2012) Effects of lithium on lipopolysaccharide-induced inflammation in rat primary glia cells. Innate Immun 18(3):447–458. https://doi.org/10.1177/1753425911421512

    Article  CAS  PubMed  Google Scholar 

  34. Zheng J, Liu Z, Li W, Tang J, Zhang D, Tang X (2017) Lithium posttreatment confers neuroprotection through glycogen synthase kinase-3β inhibition in intracerebral hemorrhage rats. J Neurosurg 127(4):716–724. https://doi.org/10.3171/2016.7.Jns152995

    Article  CAS  PubMed  Google Scholar 

  35. Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Current Biol: CB 6(12):1664–1668. https://doi.org/10.1016/s0960-9822(02)70790-2

    Article  CAS  Google Scholar 

  36. Blennow K, Brody DL, Kochanek PM, Levin H, McKee A, Ribbers GM, Yaffe K, Zetterberg H (2016) Traumatic brain injuries. Nat Rev Dis Primers 2:16084. https://doi.org/10.1038/nrdp.2016.84

    Article  PubMed  Google Scholar 

  37. Powers WJ (2020) Acute ischemic stroke. N Engl J Med 383(3):252–260. https://doi.org/10.1056/NEJMcp1917030

    Article  PubMed  Google Scholar 

  38. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M (2020) Management of glioblastoma: State of the art and future directions. CA A Cancer J Clin 70(4):299–312. https://doi.org/10.3322/caac.21613

    Article  Google Scholar 

  39. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet (London, England) 397(10291):2284–2303. https://doi.org/10.1016/s0140-6736(21)00218-x

    Article  CAS  Google Scholar 

  40. Surendranathan A, Rowe JB, O’Brien JT (2015) Neuroinflammation in Lewy body dementia. Parkinsonism Relat Disord 21(12):1398–1406. https://doi.org/10.1016/j.parkreldis.2015.10.009

    Article  PubMed  Google Scholar 

  41. Foulds IS, Barker AT (1983) Human skin battery potentials and their possible role in wound healing. Br J Dermatol 109(5):515–522. https://doi.org/10.1111/j.1365-2133.1983.tb07673.x

    Article  CAS  PubMed  Google Scholar 

  42. Zhao M (2009) Electrical fields in wound healing-an overriding signal that directs cell migration. Semin Cell Dev Biol 20(6):674–682. https://doi.org/10.1016/j.semcdb.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  43. Zhao M, Penninger J, Isseroff RR (2010) Electrical activation of wound-healing pathways. Adv Skin Wound Care 1:567–573. https://doi.org/10.1089/9781934854013.567

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fang KS, Ionides E, Oster G, Nuccitelli R, Isseroff RR (1999) Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. J Cell Sci 112(Pt 12):1967–1978

    Article  CAS  Google Scholar 

  45. Zhao M, Dick A, Forrester JV, McCaig CD (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10(4):1259–1276. https://doi.org/10.1091/mbc.10.4.1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zohrabian VM, Forzani B, Chau Z, Murali R, Jhanwar-Uniyal M (2009) Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res 29(1):119–123

    CAS  PubMed  Google Scholar 

  47. Cao L, Pu J, Zhao M (2011) GSK-3beta is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis. Cell Mol Life Sci: CMLS 68(18):3081–3093. https://doi.org/10.1007/s00018-010-0608-z

    Article  CAS  PubMed  Google Scholar 

  48. Zhou GL, Zhang H, Wu H, Ghai P, Field J (2014) Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin. J Cell Sci 127(Pt 23):5052–5065. https://doi.org/10.1242/jcs.156059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DesMarais V, Ghosh M, Eddy R, Condeelis J (2005) Cofilin takes the lead. J Cell Sci 118(Pt 1):19–26. https://doi.org/10.1242/jcs.01631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Jiawei Zhou from the Shanghai Institutes for Biological Science, Chinese Academy of Sciences (Shanghai, China) for providing us with BV2 cells.

Funding

This work was sponsored by the National Natural Science Foundation of China (grant numbers 82071358, 81771317, 81772058 and 81801235), Shanghai Talent Development Fund (grant number 2018077), Program of Shanghai Academic/Technology Research Leader (grant number 21XD1422400) and Project of Shanghai Medical And Health Development Foundation (20224Z0012).

Author information

Authors and Affiliations

Authors

Contributions

Yuxiao Ma, Chun Yang, Qian Liang, and Zhenghui He performed the experiments and wrote the manuscript. Weiji Weng designed the experiments and created the pictures. Jin Lei, Loren Skudder-Hill, and Jiyao Jiang edited the manuscript. Junfeng Feng designed and managed the entire study.

Corresponding author

Correspondence to Junfeng Feng.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12035_2022_2815_MOESM1_ESM.jpg

Supplement Figure 1: Network between ERK, GSK3β, cofilin, MAPK signaling pathway and actin cytoskeleton reorganization. Blue circles represent the gene and orange circles represent the pathway. The lines between genes and pathways represent the reported articles that investigated associations between the two genes or pathways (JPG 2275 KB)

12035_2022_2815_MOESM2_ESM.xlsx

Supplement Table 1: The differently expressed genes data from the RNA sequencing (absolute fold > 2, p < 0.05) between no DCEF and DCEF groups. (XLSX 741 KB)

12035_2022_2815_MOESM3_ESM.xlsx

Supplement Table 2: The up-regulated KEGG pathway enrichment analysis data between no DCEF and DCEF groups. (XLSX 49 KB)

Supplement Video 1: BV2 microglia migration video without DCEF. (MP4 2887 KB)

Supplement Video 2: BV2 microglia migration video under 150 mV/mm DCEF stimulation. (MP4 2960 KB)

Supplement Video 3: BV2 microglia migration video under 300 mV/mm DCEF stimulation. (MP4 3033 KB)

Supplement Video 4: BV2 microglia migration video with reversed DCEF stimulation at the middle of the time period. (MP4 3153 KB)

Supplement Video 5: BV2 microglia migration video under 300 mV/mm DCEF stimulation with 100 nM PMA. (MP4 1943 KB)

Supplement Video 6: BV2 microglia migration video under 300 mV/mm DCEF stimulation with 20 mM LiCl. (MP4 2.21 MB)

Supplement Video 7: BV2 microglia migration video under 300 mV/mm DCEF stimulation with cofilin siRNA. (MP4 2043 KB)

Supplement Video 8: BV2 microglia transfected with cofilin siRNA and cofilin(S3A) plasmid migration video under 300 mV/mm DCEF stimulation. (MP4 3031 KB)

Supplementary file12 (XLSX 7248 KB)

Supplementary file13 (AVI 9029 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yang, C., Liang, Q. et al. Direct Current Electric Field Coordinates the Migration of BV2 Microglia via ERK/GSK3β/Cofilin Signaling Pathway. Mol Neurobiol 59, 3665–3677 (2022). https://doi.org/10.1007/s12035-022-02815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02815-5

Keywords

Navigation