Skip to main content

Advertisement

Log in

Effects of Involuntary and Voluntary Exercise in Combination with Acousto-Optic Stimulation on Adult Neurogenesis in an Alzheimer's Mouse Model

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Single-factor intervention, such as physical exercise and auditory and visual stimulation, plays a positive role on the prevention and treatment of Alzheimer’s disease (AD); however, the therapeutic effects of single-factor intervention are limited. The beneficial effects of these multifactor combinations on AD and its molecular mechanism have yet to be elucidated. Here, we investigated the effect of multifactor intervention, voluntary wheel exercise, and involuntary treadmill running in combination with acousto-optic stimulation, on adult neurogenesis and behavioral phenotypes in a mouse model of AD. We found that 4 weeks of multifactor intervention can significantly increase the production of newborn cells (BrdU+ cells) and immature neurons (DCX+ cells) in the hippocampus and lateral ventricle of Aβ oligomer-induced mice. Importantly, the multifactor intervention could promote BrdU+ cells to differentiate into neurons (BrdU+ DCX+ cells or BrdU+ NeuN+ cells) and astrocytes (BrdU+GFAP+ cells) in the hippocampus and ameliorate Aβ oligomer-induced cognitive impairment and anxiety- and depression-like behaviors in mice evaluated by novel object recognition, Morris water maze tests, elevated zero maze, forced swimming test, and tail suspension test, respectively. Moreover, multifactor intervention could lead to an increase in the protein levels of PSD-95, SYP, DCX, NeuN, GFAP, Bcl-2, BDNF, TrkB, and pSer473-Akt and a decrease in the protein levels of BAX and caspase-9 in the hippocampal lysates of Aβ oligomer-induced mice. Furthermore, sequencing analysis of serum metabolites revealed that aberrantly expressed metabolites modulated by multifactor intervention were highly enriched in the biological process associated with keeping neurons functioning and neurobehavioral function. Additionally, the intervention-mediated serum metabolites mainly participated in glutamate metabolism, glucose metabolism, and the tricarboxylic acid cycle in mice. Our findings suggest the potential of multifactor intervention as a non-invasive therapeutic strategy for AD to anti-Aβ oligomer neurotoxicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data generated during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-beta

NBM:

Nucleus basalis magnocellularis

PSD-95:

Postsynaptic density 95

SYP:

Synaptophysin

DCX:

Doublecortin

NeuN:

Neuronal nuclei

GFAP:

Glial fibrillary acidic protein

Bcl-2:

B cell chronic lymphoma-2

ICR:

Institute of Cancer Research

NIH:

National Institutes of Health

HFIP:

Hexafluoroisopropanol

LED:

Light-emitting diode

i.p.:

Intraperitoneal

BrdU:

5′-Bromo-2′-deoxyuridine

aNSCs:

Adult neural stem cells

PBS:

Phosphate-buffered saline

PFA:

Paraformaldehyde

DAPI:

4′6-Diamidino-2-phenylindole

MWM:

Morris water maze

NOR:

Novel object recognition

EZM:

Elevated zero maze

FST:

Forced swimming test

TST:

Tail suspension test

PVDF:

Polyvinylidene difluoride membranes

GC-MS:

Gas chromatography-mass spectrometry

EDTA:

Ethylenediaminetetraacetic acid

QC:

Quality control

CAMERA:

Collection of algorithms of metabolite profile annotation

PCA:

Principal component analysis

PLS-DA:

Partial least square discriminant analysis

VIP:

Variable importance in the projection

ANOVA:

Analysis of variance

SGZ:

Subgranular zones

SVZ:

Subventricular zone

DG:

Dentate gyrus

BDNF:

Brain-derived neurotrophic factor

TrkB:

Tropomyosin-related kinase receptor type B

UHPLC-Q-TOF/MS:

Ultra-performance liquid chromatography and quadrupole time-of-flight/metabolomics

OPLS-DA:

Orthogonal partial least-squares discriminant analysis

References

  1. Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim CAF, Tousseyn T, Balusu S, De Strooper B, Thal DR (2020) Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease. Acta Neuropathol 139(3):463–484. https://doi.org/10.1007/s00401-019-02103-y

    Article  CAS  PubMed  Google Scholar 

  2. Imamura T, Yanagihara YT, Ohyagi Y, Nakamura N, Iinuma KM, Yamasaki R, Asai H, Maeda M, Murakami K, Irie K, Kira JI (2020) Insulin deficiency promotes formation of toxic amyloid-beta42 conformer co-aggregating with hyper-phosphorylated tau oligomer in an Alzheimer’s disease model. Neurobiol Dis 137:104739. https://doi.org/10.1016/j.nbd.2020.104739

    Article  CAS  PubMed  Google Scholar 

  3. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120(4):545–555. https://doi.org/10.1016/j.cell.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  4. Mahgoub N, Alexopoulos GS (2016) Amyloid hypothesis: is there a role for antiamyloid treatment in late-life depression? Am J Geriatr Psychiatry 24(3):239–247. https://doi.org/10.1016/j.jagp.2015.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. International AsD (2019) World Alzheimer's report 2019: attitudes to dementia. London: Alzheimer's Disease International. https://www.alzint.org/resource/world-alzheimer-report-2019. Accessed 20 Sept 2019

  6. Alzheimer’s A (2016) 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 12(4):459–509. https://doi.org/10.1016/j.jalz.2016.03.001

    Article  Google Scholar 

  7. Bossers WJ, van der Woude LH, Boersma F, Hortobagyi T, Scherder EJ, van Heuvelen MJ (2016) Comparison of effect of two exercise programs on activities of daily living in individuals with dementia: a 9-week randomized, controlled trial. J Am Geriatr Soc 64(6):1258–1266. https://doi.org/10.1111/jgs.14160

    Article  PubMed  Google Scholar 

  8. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560. https://doi.org/10.1038/s41591-019-0375-9

    Article  CAS  PubMed  Google Scholar 

  9. Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res(7):F1000. https://doi.org/10.12688/f1000research.14506.1

    Article  CAS  Google Scholar 

  10. Kempermann G (2019) Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci 20(4):235–245. https://doi.org/10.1038/s41583-019-0120-x

    Article  CAS  PubMed  Google Scholar 

  11. Triviño-Paredes J, Patten AR, Gil-Mohapel J, Christie BR (2016) The effects of hormones and physical exercise on hippocampal structural plasticity. Front Neuroendocrinol 41:23–43. https://doi.org/10.1016/j.yfrne.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Wu C, Yang L, Tucker D, Dong Y, Zhu L, Duan R, Liu TC, Zhang Q (2018) Beneficial effects of exercise pretreatment in a sporadic Alzheimer’s rat model. Med Sci Sports Exerc 50(5):945–956. https://doi.org/10.1249/mss.0000000000001519

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cassé-Perrot C, Lanteaume L, Deguil J, Bordet R, Auffret A, Otten L, Blin O, Bartrés-Faz D, Micallef J (2016) Neurobehavioral and cognitive changes induced by sleep deprivation in healthy volunteers. CNS Neurol Disord Drug Targets 15(7):777–801. https://doi.org/10.2174/1871527315666160518125156

    Article  CAS  PubMed  Google Scholar 

  14. Yu F, Vock DM, Barclay TR (2018) Executive function: responses to aerobic exercise in Alzheimer’s disease. Geriatr Nurs 39(2):219–224. https://doi.org/10.1016/j.gerinurse.2017.09.005

    Article  PubMed  Google Scholar 

  15. Soni M, Orrell M, Bandelow S, Steptoe A, Rafnsson S, d’Orsi E, Xavier A, Hogervorst E (2019) Physical activity pre- and post-dementia: English longitudinal study of ageing. Aging Ment Health 23(1):15–21. https://doi.org/10.1080/13607863.2017.1390731

    Article  PubMed  Google Scholar 

  16. Hosseini N, Alaei H, Reisi P, Radahmadi M (2013) The effect of treadmill running on memory before and after the NBM-lesion in rats. J Bodyw Mov Ther 17(4):423–429. https://doi.org/10.1016/j.jbmt.2012.12.005

    Article  PubMed  Google Scholar 

  17. Nichol K, Deeny SP, Seif J, Camaclang K, Cotman CW (2009) Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement 5(4):287–294. https://doi.org/10.1016/j.jalz.2009.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koo JH, Kang EB, Oh YS, Yang DS, Cho JY (2017) Treadmill exercise decreases amyloid-beta burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp Neurol 288:142–152. https://doi.org/10.1016/j.expneurol.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  19. Lu Y, Dong Y, Tucker D, Wang R, Ahmed ME, Brann D, Zhang Q (2017) Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. J Alzheimers Dis 56(4):1469–1484. https://doi.org/10.3233/jad-160869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17(10):525–544. https://doi.org/10.1016/j.tics.2013.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hötting K, Röder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37(9 Pt B):2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005

    Article  PubMed  Google Scholar 

  22. de Oliveira SF, Ferreira JV, Plácido J, Sant’Anna P, Araújo J, Marinho V, Laks J, Camaz Deslandes A (2019) Three months of multimodal training contributes to mobility and executive function in elderly individuals with mild cognitive impairment, but not in those with Alzheimer’s disease: a randomized controlled trial. Maturitas 126:28–33. https://doi.org/10.1016/j.maturitas.2019.04.217

    Article  Google Scholar 

  23. Karssemeijer EGA, Aaronson JA, Bossers WJR, Donders R, Olde Rikkert MGM, Kessels RPC (2019) The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. Alzheimers Res Ther 11(1):3. https://doi.org/10.1186/s13195-018-0454-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schimidt HL, Garcia A, Izquierdo I, Mello-Carpes PB, Carpes FP (2019) Strength training and running elicit different neuroprotective outcomes in a β-amyloid peptide-mediated Alzheimer’s disease model. Physiol Behav 206:206–212. https://doi.org/10.1016/j.physbeh.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  25. Kurudenkandy FR, Zilberter M, Biverstal H, Presto J, Honcharenko D, Stromberg R, Johansson J, Winblad B, Fisahn A (2014) Amyloid-beta-induced action potential desynchronization and degradation of hippocampal gamma oscillations is prevented by interference with peptide conformation change and aggregation. J Neurosci 34(34):11416–11425. https://doi.org/10.1523/JNEUROSCI.1195-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng C, Bieri KW, Hsiao YT, Colgin LL (2016) Spatial sequence coding differs during slow and fast gamma rhythms in the hippocampus. Neuron 89(2):398–408. https://doi.org/10.1016/j.neuron.2015.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mably AJ, Gereke BJ, Jones DT, Colgin LL (2017) Impairments in spatial representations and rhythmic coordination of place cells in the 3xTg mouse model of Alzheimer’s disease. Hippocampus 27(4):378–392. https://doi.org/10.1002/hipo.22697

    Article  CAS  PubMed  Google Scholar 

  28. Jafari Z, Kolb BE, Mohajerani MH (2020) Neural oscillations and brain stimulation in Alzheimer’s disease. Prog Neurobiol 194:101878. https://doi.org/10.1016/j.pneurobio.2020.101878

    Article  CAS  PubMed  Google Scholar 

  29. Etter G, van der Veldt S, Manseau F, Zarrinkoub I, Trillaud-Doppia E, Williams S (2019) Optogenetic gamma stimulation rescues memory impairments in an Alzheimer’s disease mouse model. Nat Commun 10(1):5322. https://doi.org/10.1038/s41467-019-13260-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martorell AJ, Paulson AL, Suk HJ, Abdurrob F, Drummond GT, Guan W, Young JZ, Kim DN, Kritskiy O, Barker SJ, Mangena V, Prince SM, Brown EN, Chung K, Boyden ES, Singer AC, Tsai LH (2019) Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 177(2):256-271.e222. https://doi.org/10.1016/j.cell.2019.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park SS, Park HS, Kim CJ, Kang HS, Kim DH, Baek SS, Kim TW (2020) Physical exercise during exposure to 40-Hz light flicker improves cognitive functions in the 3xTg mouse model of Alzheimer’s disease. Alzheimers Res Ther 12(1):62. https://doi.org/10.1186/s13195-020-00631-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun MK (2018) Roles of neural regeneration in memory pharmacology. Neural Regen Res 13(3):406–407. https://doi.org/10.4103/1673-5374.228714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang E, Wen Z, Song H, Christian KM, Ming GL (2016) Adult neurogenesis and psychiatric disorders. Cold Spring Harb Perspect Biol 8(9):a019026. https://doi.org/10.1101/cshperspect.a019026

    Article  PubMed  PubMed Central  Google Scholar 

  34. Weissleder C, North HF, Shannon Weickert C (2019) Important unanswered questions about adult neurogenesis in schizophrenia. Curr Opin Psychiatry 32(3):170–178. https://doi.org/10.1097/yco.0000000000000501

    Article  PubMed  Google Scholar 

  35. Berger T, Lee H, Young AH, Aarsland D, Thuret S (2020) Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease. Trends Mol Med 26(9):803–818. https://doi.org/10.1016/j.molmed.2020.03.010

    Article  PubMed  Google Scholar 

  36. Yang H, Luo Y, Hu Q, Tian X, Wen H (2021) Benefits in Alzheimer’s disease of sensory and multisensory stimulation. J Alzheimers Dis 82(2):463–484. https://doi.org/10.3233/JAD-201554

    Article  CAS  PubMed  Google Scholar 

  37. Xiang S, Liu F, Lin J, Chen H, Huang C, Chen L, Zhou Y, Ye L, Zhang K, Jin J, Zhen J, Wang C, He S, Wang Q, Cui W, Zhang J (2017) Fucoxanthin inhibits beta-amyloid assembly and attenuates beta-amyloid oligomer-induced cognitive impairments. J Agric Food Chem 65(20):4092–4102. https://doi.org/10.1021/acs.jafc.7b00805

    Article  CAS  PubMed  Google Scholar 

  38. Siteneski A, Olescowicz G, Pazini FL, Camargo A, Fraga DB, Brocardo PS, Gil-Mohapel J, Cunha MP, Rodrigues ALS (2020) Antidepressant-like and pro-neurogenic effects of physical exercise: the putative role of FNDC5/irisin pathway. J Neural Transm (Vienna) 127(3):355–370. https://doi.org/10.1007/s00702-020-02143-9

    Article  CAS  Google Scholar 

  39. Li L, Miao M, Chen J, Liu Z, Li W, Qiu Y, Xu S, Wang Q (2020) Role of ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimer’s disease. J Neurochem 157:993–1012. https://doi.org/10.1111/jnc.15234

    Article  CAS  PubMed  Google Scholar 

  40. Li L, Qiu Y, Miao M, Liu Z, Li W, Zhu Y, Wang Q (2020) Reduction of Tet2 exacerbates early stage Alzheimer’s pathology and cognitive impairments in 2×Tg-AD mice. Hum Mol Genet 29(11):1833–1852. https://doi.org/10.1093/hmg/ddz282

    Article  CAS  PubMed  Google Scholar 

  41. Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM (2017) Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci 40(6):347–357. https://doi.org/10.1016/j.tins.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  42. Gusel’nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta naturae 7(2):42–47. https://doi.org/10.32607/20758251-2015-7-2-42-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q (2016) Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol 53(3):1637–1647. https://doi.org/10.1007/s12035-015-9122-5

    Article  CAS  PubMed  Google Scholar 

  44. Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF (2020) Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 68(5):878–897. https://doi.org/10.1002/glia.23734

    Article  PubMed  Google Scholar 

  45. Ebrahim AS, Sabbagh H, Liddane A, Raufi A, Kandouz M, Al-Katib A (2016) Hematologic malignancies: newer strategies to counter the BCL-2 protein. J Cancer Res Clin Oncol 142(9):2013–2022. https://doi.org/10.1007/s00432-016-2144-1

    Article  CAS  PubMed  Google Scholar 

  46. An HK, Chung KM, Park H, Hong J, Gim JE, Choi H, Lee YW, Choi J, Mun JY, Yu SW (2020) CASP9 (caspase 9) is essential for autophagosome maturation through regulation of mitochondrial homeostasis. Autophagy 16(9):1598–1617. https://doi.org/10.1080/15548627.2019.1695398

    Article  PubMed  Google Scholar 

  47. Song M, Martinowich K, Lee FS (2017) BDNF at the synapse: why location matters. Mol Psychiatry 22(10):1370–1375. https://doi.org/10.1038/mp.2017.144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin W (2020) Regulation of BDNF-TrkB signaling and potential therapeutic strategies for Parkinson’s disease. J Clin Med 9(1):257. https://doi.org/10.3390/jcm9010257

    Article  CAS  PubMed Central  Google Scholar 

  49. Nicoll JAR, Buckland GR, Harrison CH, Page A, Harris S, Love S, Neal JW, Holmes C, Boche D (2019) Persistent neuropathological effects 14 years following amyloid-beta immunization in Alzheimer’s disease. Brain 142(7):2113–2126. https://doi.org/10.1093/brain/awz142

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brautigam H, Steele JW, Westaway D, Fraser PE, St George-Hyslop PH, Gandy S, Hof PR, Dickstein DL (2012) The isotropic fractionator provides evidence for differential loss of hippocampal neurons in two mouse models of Alzheimer’s disease. Mol Neurodegener 7:58. https://doi.org/10.1186/1750-1326-7-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee SJ, Nam E, Lee HJ, Savelieff MG, Lim MH (2017) Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev 46(2):310–323. https://doi.org/10.1039/c6cs00731g

    Article  CAS  PubMed  Google Scholar 

  52. Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129(2):183–206. https://doi.org/10.1007/s00401-015-1386-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283(44):29639–29643. https://doi.org/10.1074/jbc.R800016200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM (2016) Amyloid-β receptors: the good, the bad, and the prion protein. J Biol Chem 291(7):3174–3183. https://doi.org/10.1074/jbc.R115.702704

    Article  CAS  PubMed  Google Scholar 

  55. Forny-Germano L, Lyra e Silva NM, Batista AF, Brito-Moreira J, Gralle M, Boehnke SE, Coe BC, Lablans A, Marques SA, Martinez AM, Klein WL, Houzel JC, Ferreira ST, Munoz DP, De Felice FG, (2014) Alzheimer’s disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J Neurosci 34(41):13629–13643. https://doi.org/10.1523/jneurosci.1353-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  56. Morroni F, Sita G, Tarozzi A, Rimondini R, Hrelia P (2016) Early effects of Aβ1-42 oligomers injection in mice: involvement of PI3K/Akt/GSK3 and MAPK/ERK1/2 pathways. Behav Brain Res 314:106–115. https://doi.org/10.1016/j.bbr.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  57. Prado Lima MG, Schimidt HL, Garcia A, Daré LR, Carpes FP, Izquierdo I, Mello-Carpes PB (2018) Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci U S A 115(10):E2403-e2409. https://doi.org/10.1073/pnas.1718435115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rossi Dare L, Garcia A, Alves N, Ventura Dias D, de Souza MA, Mello-Carpes PB (2019) Physical and cognitive training are able to prevent recognition memory deficits related to amyloid beta neurotoxicity. Behav Brain Res 365:190–197. https://doi.org/10.1016/j.bbr.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  59. Peterman JL, White JD, Calcagno A, Hagen C, Quiring M, Paulhus K, Gurney T, Eimerbrink MJ, Curtis M, Boehm GW, Chumley MJ (2020) Prolonged isolation stress accelerates the onset of Alzheimer’s disease-related pathology in 5xFAD mice despite running wheels and environmental enrichment. Behav Brain Res 379:112366. https://doi.org/10.1016/j.bbr.2019.112366

    Article  CAS  PubMed  Google Scholar 

  60. Koo JH, Kang EB, Oh YS, Yang DS, Cho JY (2017) Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp Neurol 288:142–152. https://doi.org/10.1016/j.expneurol.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  61. De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, García-Lucerga C, Blasco-Lafarga C, Garcia-Dominguez E, Carretero A, Correas AG, Viña J, Gomez-Cabrera MC (2020) Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci 9(5):394–404. https://doi.org/10.1016/j.jshs.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin Y, Lu X, Dong J, He X, Yan T, Liang H, Sui M, Zheng X, Liu H, Zhao J, Lu X (2015) Involuntary, forced and voluntary exercises equally attenuate neurocognitive deficits in vascular dementia by the BDNF-pCREB mediated pathway. Neurochem Res 40(9):1839–1848. https://doi.org/10.1007/s11064-015-1673-3

    Article  CAS  PubMed  Google Scholar 

  63. Belviranlı M, Okudan N (2019) Voluntary, involuntary and forced exercises almost equally reverse behavioral impairment by regulating hippocampal neurotrophic factors and oxidative stress in experimental Alzheimer’s disease model. Behav Brain Res 364:245–255. https://doi.org/10.1016/j.bbr.2019.02.030

    Article  CAS  PubMed  Google Scholar 

  64. Robison LS, Popescu DL, Anderson ME, Francis N, Hatfield J, Sullivan JK, Beigelman SI, Xu F, Anderson BJ, Van Nostrand WE, Robinson JK (2019) Long-term voluntary wheel running does not alter vascular amyloid burden but reduces neuroinflammation in the Tg-SwDI mouse model of cerebral amyloid angiopathy. J Neuroinflammation 16(1):144. https://doi.org/10.1186/s12974-019-1534-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bernardo TC, Beleza J, Rizo-Roca D, Santos-Alves E, Leal C, Martins MJ, Ascensão A, Magalhães J (2020) Physical exercise mitigates behavioral impairments in a rat model of sporadic Alzheimer’s disease. Behav Brain Res 379:112358. https://doi.org/10.1016/j.bbr.2019.112358

    Article  CAS  PubMed  Google Scholar 

  66. Chen WQ, Viidik A, Skalicky M, Höger H, Lubec G (2007) Hippocampal signaling cascades are modulated in voluntary and treadmill exercise rats. Electrophoresis 28(23):4392–4400. https://doi.org/10.1002/elps.200700336

    Article  CAS  PubMed  Google Scholar 

  67. Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225. https://doi.org/10.1146/annurev-neuro-062111-150444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Garza KM, Zhang L, Borron B, Wood LB, Singer AC (2020) Gamma Visual stimulation induces a neuroimmune signaling profile distinct from acute neuroinflammation. J Neurosci 40(6):1211–1225. https://doi.org/10.1523/jneurosci.1511-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. He Q, Colon-Motas KM, Pybus AF, Piendel L, Seppa JK, Walker ML, Manzanares CM, Qiu D, Miocinovic S, Wood LB, Levey AI, Lah JJ, Singer AC (2021) A feasibility trial of gamma sensory flicker for patients with prodromal Alzheimer’s disease. Alzheimers Dement (N Y) 7(1):e12178. https://doi.org/10.1002/trc2.12178

    Article  Google Scholar 

  70. Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48. https://doi.org/10.1186/1750-1326-9-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scopa C, Marrocco F, Latina V, Ruggeri F, Corvaglia V, La Regina F, Ammassari-Teule M, Middei S, Amadoro G, Meli G, Scardigli R, Cattaneo A (2020) Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 27(3):934–948. https://doi.org/10.1038/s41418-019-0409-3

    Article  CAS  PubMed  Google Scholar 

  72. Cameron HA, Glover LR (2015) Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66:53–81. https://doi.org/10.1146/annurev-psych-010814-015006

    Article  PubMed  Google Scholar 

  73. Zhao X, van Praag H (2020) Steps towards standardized quantification of adult neurogenesis. Nat Commun 11(1):4275. https://doi.org/10.1038/s41467-020-18046-y

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hüttenrauch M, Brauß A, Kurdakova A, Borgers H, Klinker F, Liebetanz D, Salinas-Riester G, Wiltfang J, Klafki HW, Wirths O (2016) Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model. Transl Psychiatry 6(5):e800. https://doi.org/10.1038/tp.2016.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–470. https://doi.org/10.1038/nature09817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cope EC, Gould E (2019) Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell 24(5):690–705. https://doi.org/10.1016/j.stem.2019.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johansson M, Stomrud E, Lindberg O, Westman E, Johansson PM, van Westen D, Mattsson N, Hansson O (2020) Apathy and anxiety are early markers of Alzheimer's disease. Neurobiol Aging https://doi.org/10.1016/j.neurobiolaging.2019.10.008

  78. Chiu PY, Steffens D, Chen PK, Hsu YC, Huang HT, Lai TJ (2012) Depression in Taiwanese patients with Alzheimer’s disease determined by the National Institutes of Mental Health Provisional Criteria. Int Psychogeriatr 24(8):1299–1305. https://doi.org/10.1017/S1041610211002262

    Article  PubMed  Google Scholar 

  79. Honer WG (2003) Pathology of presynaptic proteins in Alzheimer’s disease: more than simple loss of terminals. Neurobiol Aging 24(8):1047–1062. https://doi.org/10.1016/j.neurobiolaging.2003.04.005

    Article  CAS  PubMed  Google Scholar 

  80. Zhang C, Zhang Y, Shen Y, Zhao G, Xie Z, Dong Y (2017) Anesthesia/surgery induces cognitive impairment in female Alzheimer’s disease Transgenic Mice. J Alzheimers Dis 57(2):505–518. https://doi.org/10.3233/jad-161268

    Article  CAS  PubMed  Google Scholar 

  81. Wang B, Wu Q, Lei L, Sun H, Michael N, Zhang X, Wang Y, Zhang Y, Ge B, Wu X, Wang Y, Xin Y, Zhao J, Li S (2019) Long-term social isolation inhibits autophagy activation, induces postsynaptic dysfunctions and impairs spatial memory. Exp Neurol 311:213–224. https://doi.org/10.1016/j.expneurol.2018.09.009

    Article  PubMed  Google Scholar 

  82. Li P, Zhou L, Zhao T, Liu X, Zhang P, Liu Y, Zheng X, Li Q (2017) Caspase-9: structure, mechanisms and clinical application. Oncotarget 8(14):23996–24008. https://doi.org/10.18632/oncotarget.15098

    Article  PubMed  PubMed Central  Google Scholar 

  83. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. https://doi.org/10.1038/nrn3379

    Article  CAS  PubMed  Google Scholar 

  84. Nakai T, Nagai T, Tanaka M, Itoh N, Asai N, Enomoto A, Asai M, Yamada S, Saifullah AB, Sokabe M, Takahashi M, Yamada K (2014) Girdin phosphorylation is crucial for synaptic plasticity and memory: a potential role in the interaction of BDNF/TrkB/Akt signaling with NMDA receptor. J Neurosci 34(45):14995–15008. https://doi.org/10.1523/JNEUROSCI.2228-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilkins JM, Trushina E (2017) Application of metabolomics in Alzheimer’s disease. Front Neurol 8:719. https://doi.org/10.3389/fneur.2017.00719

    Article  PubMed  Google Scholar 

  87. Enache TA, Oliveira-Brett AM (2017) Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry 114:13–23. https://doi.org/10.1016/j.bioelechem.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  88. Dinamarca MC, Rios JA, Inestrosa NC (2012) Postsynaptic receptors for amyloid-beta oligomers as mediators of neuronal damage in Alzheimer’s disease. Front Physiol 3:464. https://doi.org/10.3389/fphys.2012.00464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ramires PR, Forjaz CL, Silva ME, Diament J, Nicolau W, Liberman B, Negrão CE (1993) Exercise tolerance is lower in type I diabetics compared with normal young men. Metabolism 42(2):191–195. https://doi.org/10.1016/0026-0495(93)90034-l

    Article  CAS  PubMed  Google Scholar 

  90. Tang X, Liu J, Dong W, Li P, Li L, Lin C, Zheng Y, Hou J, Li D (2013) The cardioprotective effects of citric acid and L-malic acid on myocardial ischemia/reperfusion injury. Evid Based Complement Alternat Med 2013:820695. https://doi.org/10.1155/2013/820695

    Article  PubMed  PubMed Central  Google Scholar 

  91. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  PubMed  Google Scholar 

  92. Domingues R, Pereira C, Cruz MT, Silva A (2021) Therapies for Alzheimer’s disease: a metabolic perspective. Mol Genet Metab 132(3):162–172. https://doi.org/10.1016/j.ymgme.2021.01.011

    Article  CAS  PubMed  Google Scholar 

  93. Bergau N, Maul S, Rujescu D, Simm A, Navarrete Santos A (2019) Reduction of glycolysis intermediate concentrations in the cerebrospinal fluid of Alzheimer’s disease patients. Front Neurosci 13:871. https://doi.org/10.3389/fnins.2019.00871

    Article  PubMed  PubMed Central  Google Scholar 

  94. Weise CM, Chen K, Chen Y, Kuang X, Savage CR, Reiman EM (2018) Left lateralized cerebral glucose metabolism declines in amyloid-β positive persons with mild cognitive impairment. Neuroimage Clin 20:286–296. https://doi.org/10.1016/j.nicl.2018.07.016

    Article  PubMed  PubMed Central  Google Scholar 

  95. Croteau E, Castellano CA, Fortier M, Bocti C, Fulop T, Paquet N, Cunnane SC (2018) A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp Gerontol 107:18–26. https://doi.org/10.1016/j.exger.2017.07.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the technical support by the Core Facilities, Ningbo University School of Medicine, and the Laboratory Animal Center, Ningbo University.

Funding

This work was supported by National Natural Science Foundation of China (No. 82001155 and No. 32171035), the Natural Science Foundation of Zhejiang Province (No.LQ19H090005 and No.LQ19H090001), Ningbo Science and Technology Bureau (No.2019B10034), the Medical Health Science and Technology Project of Zhejiang Provincial Health Commission (No. 2022KY1144 and No.2019RC316), Scientific Research Fund Project of Ningbo University (XYL20030), the Student Research, Innovation Program of Ningbo University (2021SRIP), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

Li-ping Li designed the experiments. Wan-yi Li performed the behavioral experiments. Jun-yan Gao and Su-Yang Lin performed the immunohistochemical experiments. Shao-tao Pan, Biao Xiao, Yu-tao Ma, and Zhi-tao Liu performed the biochemical experiments. Kai Xie, Wei Shen, Qin-wen Wang, Guang-yu Li, and Jie-jie Guo carried out the data analysis. Li-ping Li, Wan-yi Li, and Jun-yan Gao wrote the manuscript.

Corresponding authors

Correspondence to Qin-wen Wang or Li-ping Li.

Ethics declarations

Ethics Approval

All animal procedures were performed in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (NIH Publication No. 8023, revised 1978) and approved by the Institutional Animal Care and Use Committee of the Ningbo University School of Medicine (SYXK(Zhe) 2013–0191).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Stimulation alleviates neurogenesis decline caused by Aβ oligomers in mice.

• Stimulation ameliorates Aβ oligomer-induced cognitive deficits in mice.

• Stimulation attenuates Aβ oligomer-induced anxiety- and depression-like behavior in mice.

• Stimulation inhibits Aβ oligomer-induced neurodegeneration through BDNF/TrkB signaling pathway.

• Stimulation improves glutamate metabolism, glycolysis, and tricarboxylic acid cycle in Aβ-induced mice.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wy., Gao, Jy., Lin, SY. et al. Effects of Involuntary and Voluntary Exercise in Combination with Acousto-Optic Stimulation on Adult Neurogenesis in an Alzheimer's Mouse Model. Mol Neurobiol 59, 3254–3279 (2022). https://doi.org/10.1007/s12035-022-02784-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02784-9

Keywords

Navigation