Skip to main content

Advertisement

Log in

Ferroptosis promotes microtubule-associated protein tau aggregation via GSK-3β activation and proteasome inhibition

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ferroptosis is a form of regulated cell death resulting from iron accumulation and lipid peroxidation. Iron dyshomeostasis and peroxidation damage of neurons in some particular brain regions are closely related to a wide range of neurodegenerative diseases known as “tauopathies,” in which intracellular aggregation of microtubule-associated protein tau is the common neuropathological feature. However, the relationship between ferroptosis and tau aggregation is not well understood. The current study demonstrates that erastin-induced ferroptosis can promote tau hyperphosphorylation and aggregation in mouse neuroblastoma cells (N2a cells). Moreover, ferroptosis inhibitor ferrostatin-1 can alleviate tau aggregation effectively. In-depth mechanism research indicates that activated glycogen synthase kinase-3β (GSK-3β) is responsible for the abnormal hyperphosphorylation of tau. More importantly, proteasome inhibition can exacerbate tau degradation obstacle and accelerate tau aggregation in the process of ferroptosis. Our results indicate that ferroptosis can lead to abnormal aggregation of tau protein and might be a promising therapeutic target of tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data are available upon reasonable request from the author for correspondence.

References

  1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang WS, Stockwell BR (2016) Ferroptosis: death by lipid peroxidation. Trends Cell Biol 26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  3. Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14(2):115–140. https://doi.org/10.2165/00002512-199914020-00004

    Article  CAS  PubMed  Google Scholar 

  4. Zhang GM, Zhang YR, Shen YX, Wang YC, Zhao M, Sun L (2021) The potential role of ferroptosis in Alzheimer’s disease. J Alzheimers Dis 80(3):907–925. https://doi.org/10.3233/jad-201369

    Article  PubMed  Google Scholar 

  5. Chiueh CC (2001) Iron overload, oxidative stress, and axonal dystrophy in brain disorders. Pediatr Neurol 25(2):138–147. https://doi.org/10.1016/s0887-8994(01)00266-1

    Article  CAS  PubMed  Google Scholar 

  6. Chen K, Jiang X, Wu M, Cao X, Bao W, Zhu LQ (2021) Ferroptosis, a potential therapeutic target in Alzheimer’s disease. Front Cell Dev Biol 9:704298. https://doi.org/10.3389/fcell.2021.704298

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9(2):139-U117. https://doi.org/10.1038/ncb1528

    Article  CAS  PubMed  Google Scholar 

  8. Johnson GV, Hartigan JA (1999) Tau protein in normal and Alzheimer’s disease brain: an update. J Alzheimers Dis 1(4–5):329–351. https://doi.org/10.3233/jad-1999-14-512

    Article  CAS  PubMed  Google Scholar 

  9. Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259(8):5301–5305

    Article  CAS  PubMed  Google Scholar 

  10. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247. https://doi.org/10.1101/cshperspect.a006247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guillozet-Bongaarts AL, Cahill ME, Cryns VL, Reynolds MR, Berry RW, Binder LI (2006) Pseudophosphorylation of tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. J Neurochem 97(4):1005–1014. https://doi.org/10.1111/j.1471-4159.2006.03784.x

    Article  CAS  PubMed  Google Scholar 

  12. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117(3):648–658. https://doi.org/10.1172/jci29715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739(2–3):268–279. https://doi.org/10.1016/j.bbadis.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  14. Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343(6257):461–463. https://doi.org/10.1038/343461a0

    Article  CAS  PubMed  Google Scholar 

  15. Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. Embo j 26(21):4546–4554. https://doi.org/10.1038/sj.emboj.7601878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, Cherny R, Wood SJ, Greenough M, Berger G, Pantelis C, McGorry P, Yung A, Finkelstein DI, Bush AI (2017) Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry 22(3):396–406. https://doi.org/10.1038/mp.2016.96

    Article  CAS  PubMed  Google Scholar 

  17. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, Wong BX, Adlard PA, Cherny RA, Lam LQ, Roberts BR, Volitakis I, Egan GF, McLean CA, Cappai R, Duce JA, Bush AI (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295. https://doi.org/10.1038/nm.2613

    Article  CAS  PubMed  Google Scholar 

  18. Perry G, Nunomura A, Hirai K, Zhu X, Prez M, Avila J, Castellani RJ, Atwood CS, Aliev G, Sayre LM, Takeda A, Smith MA (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radical Bio Med 33(11):1475–1479. https://doi.org/10.1016/S0891-5849(02)01113-9

    Article  CAS  Google Scholar 

  19. Zukor H, Song W, Liberman A, Mui J, Vali H, Fillebeen C, Pantopoulos K, Wu TD, Guerquin-Kern JL, Schipper HM (2009) HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues. J Neurochem 109(3):776–791. https://doi.org/10.1111/j.1471-4159.2009.06007.x

    Article  CAS  PubMed  Google Scholar 

  20. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060. https://doi.org/10.1016/s1474-4422(14)70117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bao WD, Zhou XT, Zhou LT, Wang F, Yin X, Lu Y, Zhu LQ, Liu D (2020) Targeting miR-124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell 19(11):e13235. https://doi.org/10.1111/acel.13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Salvador GA (2010) Iron in neuronal function and dysfunction. BioFactors 36(2):103–110. https://doi.org/10.1002/biof.80

    Article  CAS  PubMed  Google Scholar 

  23. Carpenter KLH, Li W, Wei H, Wu B, Xiao X, Liu C, Worley G, Egger HL (2016) Magnetic susceptibility of brain iron is associated with childhood spatial IQ. Neuroimage 132:167–174. https://doi.org/10.1016/j.neuroimage.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  24. Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC, Bush AI (2020) Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry 25(11):2932–2941. https://doi.org/10.1038/s41380-019-0375-7

    Article  CAS  PubMed  Google Scholar 

  25. Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94(18):9866–9868. https://doi.org/10.1073/pnas.94.18.9866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wan W, Cao L, Kalionis B, Murthi P, Xia S, Guan Y (2019) Iron deposition leads to hyperphosphorylation of tau and disruption of insulin signaling. Front Neurol 10:607. https://doi.org/10.3389/fneur.2019.00607

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38(24):7609–7616. https://doi.org/10.1021/bi990438f

    Article  CAS  PubMed  Google Scholar 

  28. Soeda Y, Yoshikawa M, Almeida OF, Sumioka A, Maeda S, Osada H, Kondoh Y, Saito A, Miyasaka T, Kimura T, Suzuki M, Koyama H, Yoshiike Y, Sugimoto H, Ihara Y, Takashima A (2015) Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups. Nat Commun 6:10216. https://doi.org/10.1038/ncomms10216

    Article  CAS  PubMed  Google Scholar 

  29. Uranga RM, Giusto NM, Salvador GA (2009) Iron-induced oxidative injury differentially regulates PI3K/Akt/GSK3beta pathway in synaptic endings from adult and aged rats. Toxicol Sci 111(2):331–344. https://doi.org/10.1093/toxsci/kfp152

    Article  CAS  PubMed  Google Scholar 

  30. Bader B, Nübling G, Mehle A, Nobile S, Kretzschmar H, Giese A (2011) Single particle analysis of tau oligomer formation induced by metal ions and organic solvents. Biochem Biophys Res Commun 411(1):190–196. https://doi.org/10.1016/j.bbrc.2011.06.135

    Article  CAS  PubMed  Google Scholar 

  31. Nübling G, Bader B, Levin J, Hildebrandt J, Kretzschmar H, Giese A (2012) Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with α-synuclein at the single molecule level. Mol Neurodegener 7:35. https://doi.org/10.1186/1750-1326-7-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu R, Jiang Y, Lai X, Liu S, Sun L, Zhou ZW (2021) A shortage of FTH induces ROS and sensitizes RAS-proficient neuroblastoma N2A cells to ferroptosis. Int J Mol Sci 22:16. https://doi.org/10.3390/ijms22168898

    Article  CAS  Google Scholar 

  33. Perry G, Nunomura A, Hirai K, Zhu X, Pérez M, Avila J, Castellani RJ, Atwood CS, Aliev G, Sayre LM, Takeda A, Smith MA (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med 33(11):1475–1479. https://doi.org/10.1016/s0891-5849(02)01113-9

    Article  CAS  PubMed  Google Scholar 

  34. Schipper HM, Bennett DA, Liberman A, Bienias JL, Schneider JA, Kelly J, Arvanitakis Z (2006) Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging 27(2):252–261. https://doi.org/10.1016/j.neurobiolaging.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  35. Wang S, Zhang P, Liu R, Li Y, Liu C, Liao X (2017) A DEHP plasticizer alters synaptic proteins via peroxidation. Toxicol Res (Camb) 6(1):89–97. https://doi.org/10.1039/c6tx00361c

    Article  CAS  Google Scholar 

  36. Xie M, Shi R, Pan Y, Zeng T, Chen Q, Wang S, Liao X (2014) Proteasome inhibition-induced downregulation of Akt/GSK-3beta pathway contributes to abnormality of tau in hippocampal slice. Mol Neurobiol 50(3):888–895. https://doi.org/10.1007/s12035-014-8702-0

    Article  CAS  PubMed  Google Scholar 

  37. Yu Q, Zhang H, Li Y, Liu C, Wang S, Liao X (2018) UCH-L1 inhibition suppresses tau aggresome formation during proteasomal impairment. Mol Neurobiol 55(5):3812–3821. https://doi.org/10.1007/s12035-017-0558-7

    Article  CAS  PubMed  Google Scholar 

  38. Xie M, Li Y, Wang SH, Yu QT, Meng X, Liao XM (2017) The involvement of NR2B and tau protein in MG132-induced CREB dephosphorylation. J Mol Neurosci 62(2):154–162. https://doi.org/10.1007/s12031-017-0919-8

    Article  CAS  PubMed  Google Scholar 

  39. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, Rosenberg PA, Lo DC, Weinberg JM, Linkermann A, Stockwell BR (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136(12):4551–4556. https://doi.org/10.1021/ja411006a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192(5):873–882. https://doi.org/10.1083/jcb.201009132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mandelkow E-M, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8(11):425–427. https://doi.org/10.1016/S0962-8924(98)01368-3

    Article  CAS  PubMed  Google Scholar 

  42. Ding H, Matthews TA, Johnson GV (2006) Site-specific phosphorylation and caspase cleavage differentially impact tau-microtubule interactions and tau aggregation. J Biol Chem 281(28):19107–19114. https://doi.org/10.1074/jbc.M511697200

    Article  CAS  PubMed  Google Scholar 

  43. Neddens J, Temmel M, Flunkert S, Kerschbaumer B, Hoeller C, Loeffler T, Niederkofler V, Daum G, Attems J, Hutter-Paier B (2018) Phosphorylation of different tau sites during progression of Alzheimer’s disease. Acta Neuropathol Commun 6(1):52. https://doi.org/10.1186/s40478-018-0557-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y, Cai F, Woodgett J, Song W (2013) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123(1):224–235. https://doi.org/10.1172/jci64516

    Article  CAS  PubMed  Google Scholar 

  45. Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519. https://doi.org/10.1016/s0896-6273(02)00706-7

    Article  CAS  PubMed  Google Scholar 

  46. Hernández F, Gómez de Barreda E, Fuster-Matanzo A, Lucas JJ, Avila J (2010) GSK3: a possible link between beta amyloid peptide and tau protein. Exp Neurol 223(2):322–325. https://doi.org/10.1016/j.expneurol.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  47. Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribé E, Dalfó E, Avila J (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2(1):3–18. https://doi.org/10.2174/1567205052772713

    Article  CAS  PubMed  Google Scholar 

  48. Dikic I (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224. https://doi.org/10.1146/annurev-biochem-061516-044908

    Article  CAS  PubMed  Google Scholar 

  49. Wang P, Joberty G, Buist A, Vanoosthuyse A, Stancu IC, Vasconcelos B, Pierrot N, Faelth-Savitski M, Kienlen-Campard P, Octave JN, Bantscheff M, Drewes G, Moechars D, Dewachter I (2017) Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Acta Neuropathol 133(5):731–749. https://doi.org/10.1007/s00401-016-1663-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vaz-Silva J, Gomes P, Jin Q, Zhu M, Zhuravleva V, Quintremil S, Meira T, Silva J, Dioli C, Soares-Cunha C, Daskalakis NP, Sousa N, Sotiropoulos I, Waites CL (2018) Endolysosomal degradation of Tau and its role in glucocorticoid-driven hippocampal malfunction. Embo j 37(20):e99084. https://doi.org/10.15252/embj.201899084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30(4):191–296. https://doi.org/10.1016/j.mam.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  52. Spotorno N, Acosta-Cabronero J, Stomrud E, Lampinen B, Strandberg OT, van Westen D, Hansson O (2020) Relationship between cortical iron and tau aggregation in Alzheimer’s disease. Brain 143(5):1341–1349. https://doi.org/10.1093/brain/awaa089

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74(1):270–279. https://doi.org/10.1046/j.1471-4159.2000.0740270.x

    Article  CAS  PubMed  Google Scholar 

  54. Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, Smith MA (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic Biol Med 30(4):447–450. https://doi.org/10.1016/s0891-5849(00)00494-9

    Article  CAS  PubMed  Google Scholar 

  55. Kim AC, Lim S, Kim YK (2018) Metal ion effects on Aβ and tau aggregation. Int J Mol Sci 19(1):128. https://doi.org/10.3390/ijms19010128

    Article  CAS  PubMed Central  Google Scholar 

  56. Lee S, Viqar F, Zimmerman ME, Narkhede A, Tosto G, Benzinger TL, Marcus DS, Fagan AM, Goate A, Fox NC, Cairns NJ, Holtzman DM, Buckles V, Ghetti B, McDade E, Martins RN, Saykin AJ, Masters CL, Ringman JM, Ryan NS, Förster S, Laske C, Schofield PR, Sperling RA, Salloway S, Correia S, Jack C Jr, Weiner M, Bateman RJ, Morris JC, Mayeux R, Brickman AM (2016) White matter hyperintensities are a core feature of Alzheimer’s disease: Evidence from the dominantly inherited Alzheimer network. Ann Neurol 79(6):929–939. https://doi.org/10.1002/ana.24647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, Han ZT, Zhang HH, Wang WX, Nelson PT, Chen JG, Lu Y, Man HY, Liu D, Zhu LQ (2021) Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ 28(5):1548–1562. https://doi.org/10.1038/s41418-020-00685-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schroder N, Figueiredo LS, de Lima MN (2013) Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies. J Alzheimers Dis 34(4):797–812. https://doi.org/10.3233/JAD-121996

    Article  CAS  PubMed  Google Scholar 

  59. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15(3):234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Rådmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Förster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16(12):1180–1191. https://doi.org/10.1038/ncb3064

    Article  CAS  PubMed  Google Scholar 

  61. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int 58(4):458–471. https://doi.org/10.1016/j.neuint.2010.12.023

    Article  CAS  PubMed  Google Scholar 

  62. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788. https://doi.org/10.1038/21650

    Article  CAS  PubMed  Google Scholar 

  63. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10(6):1089–1099. https://doi.org/10.1016/0896-6273(93)90057-x

    Article  CAS  PubMed  Google Scholar 

  64. Guo C, Wang P, Zhong ML, Wang T, Huang XS, Li JY, Wang ZY (2013) Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int 62(2):165–172. https://doi.org/10.1016/j.neuint.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  65. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12(1):289–309. https://doi.org/10.1016/j.arr.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  66. Pérez M, Hernández F, Lim F, Díaz-Nido J, Avila J (2003) Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 5(4):301–308. https://doi.org/10.3233/jad-2003-5405

    Article  PubMed  Google Scholar 

  67. Uemura K, Kuzuya A, Shimozono Y, Aoyagi N, Ando K, Shimohama S, Kinoshita A (2007) GSK3beta activity modifies the localization and function of presenilin 1. J Biol Chem 282(21):15823–15832. https://doi.org/10.1074/jbc.M610708200

    Article  CAS  PubMed  Google Scholar 

  68. Zheng K, Hu F, Zhou Y, Zhang J, Zheng J, Lai C, Xiong W, Cui K, Hu YZ, Han ZT, Zhang HH, Chen JG, Man HY, Liu D, Lu Y, Zhu LQ (2021) miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer’s disease. Nat Commun 12(1):1903. https://doi.org/10.1038/s41467-021-22196-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giese KP (2009) GSK-3: a key player in neurodegeneration and memory. IUBMB Life 61(5):516–521. https://doi.org/10.1002/iub.187

    Article  CAS  PubMed  Google Scholar 

  70. Ciechanover A (2015) The unravelling of the ubiquitin system. Nat Rev Mol Cell Biol 16(5):322–324. https://doi.org/10.1038/nrm3982

    Article  CAS  PubMed  Google Scholar 

  71. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147. https://doi.org/10.1038/emm.2014.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. https://doi.org/10.1146/annurev.biochem.67.1.425

    Article  CAS  PubMed  Google Scholar 

  73. Kwon YT, Ciechanover A (2017) The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci 42(11):873–886. https://doi.org/10.1016/j.tibs.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  74. Nedelsky NB, Todd PK, Taylor JP (2008) Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 1782(12):691–699. https://doi.org/10.1016/j.bbadis.2008.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ciechanover A, Kwon YT (2017) Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci 11:185. https://doi.org/10.3389/fnins.2017.00185

    Article  PubMed  PubMed Central  Google Scholar 

  76. Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol 27(7):491–504. https://doi.org/10.1016/j.tcb.2017.01.001

    Article  CAS  PubMed  Google Scholar 

  77. Clague MJ, Urbé S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143(5):682–685. https://doi.org/10.1016/j.cell.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  78. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. https://doi.org/10.1152/physrev.00027.2001

    Article  CAS  PubMed  Google Scholar 

  79. Xie M, Shi R, Pan Y, Zeng T, Chen Q, Wang S, Liao X (2014) Proteasome inhibition-induced downregulation of Akt/GSK-3β pathway contributes to abnormality of tau in hippocampal slice. Mol Neurobiol 50(3):888–895. https://doi.org/10.1007/s12035-014-8702-0

    Article  CAS  PubMed  Google Scholar 

  80. Galves M, Rathi R, Prag G, Ashkenazi A (2019) Ubiquitin signaling and degradation of aggregate-prone proteins. Trends Biochem Sci 44(10):872–884. https://doi.org/10.1016/j.tibs.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  81. Thibaudeau TA, Anderson RT, Smith DM (2018) A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat Commun 9(1):1097. https://doi.org/10.1038/s41467-018-03509-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15(3):433–442. https://doi.org/10.1093/hmg/ddi458

    Article  CAS  PubMed  Google Scholar 

  83. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. https://doi.org/10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Krüger U, Mandelkow E, Mandelkow EM (2010) Generation of tau aggregates and clearance by autophagy in an inducible cell model of tauopathy. Neurodegener Dis 7(1–3):103–107. https://doi.org/10.1159/000285516

    Article  CAS  PubMed  Google Scholar 

  85. Lin WM, Li ZG (2015) Blockage of cisplatin-induced autophagy sensitizes cervical cancer cells to cisplatin. Genet Mol Res 14(4):16905–16912. https://doi.org/10.4238/2015.December.14.18

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of our research team for their help and support from School of Life Sciences, Central China Normal University.

Funding

This work was supported by the project of Hubei Key Laboratory of Genetic Regulation and Integrative Biology (No. GRIB201905) and National Natural Science Foundation of China (No. 81771150, 22076061, and 41601543). Hubei Provincial Key Laboratory of Intelligent Robot,No. GRIB201905,Xiaomei Liao,National Natural Science Foundation of China,81771150,Shaohui Wang,22076061,Hongwei Sun,41601543,Hongwei Sun

Author information

Authors and Affiliations

Authors

Contributions

XM-L conceived the experiments and supervised the project. YJ and YB-L performed the experiments. SH-W collected the data, made the figures, and wrote the manuscript. MJ-M did the analysis. HW-S contributed essential reagents or tools. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaomei Liao.

Ethics declarations

Ethics Approval

This experiment was approved by the Ethics Committee of Central China Normal University.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Jiang, Y., Liu, Y. et al. Ferroptosis promotes microtubule-associated protein tau aggregation via GSK-3β activation and proteasome inhibition. Mol Neurobiol 59, 1486–1501 (2022). https://doi.org/10.1007/s12035-022-02731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02731-8

Keywords

Navigation