Skip to main content

Advertisement

Log in

Neurovascular Unit Alterations in the Growth-Restricted Newborn Are Improved Following Ibuprofen Treatment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The developing brain is particularly vulnerable to foetal growth restriction (FGR) and abnormal neurodevelopment is common in the FGR infant ranging from behavioural and learning disorders to cerebral palsy. No treatment exists to protect the FGR newborn brain. Recent evidence suggests inflammation may play a key role in the mechanism responsible for the progression of brain impairment in the FGR newborn, including disruption to the neurovascular unit (NVU). We explored whether ibuprofen, an anti-inflammatory drug, could reduce NVU disruption and brain impairment in the FGR newborn. Using a preclinical FGR piglet model, ibuprofen was orally administered for 3 days from birth. FGR brains demonstrated a proinflammatory state, with changes to glial morphology (astrocytes and microglia), and blood-brain barrier disruption, assessed by IgG and albumin leakage into the brain parenchyma and a decrease in blood vessel density. Loss of interaction between astrocytic end-feet and blood vessels was evident where plasma protein leakage was present, suggestive of structural deficits to the NVU. T-cell infiltration was also evident in the parenchyma of FGR piglet brains. Ibuprofen treatment reduced the pro-inflammatory response in FGR piglets, reducing the number of activated microglia and enhancing astrocyte interaction with blood vessels. Ibuprofen also attenuated plasma protein leakage, regained astrocytic end-feet interaction around vessels, and decreased T-cell infiltration into the FGR brain. These findings suggest postnatal administration of ibuprofen modulates the inflammatory state, allowing for stronger interaction between vasculature and astrocytic end-feet to restore NVU integrity. Modulation of the NVU improves the FGR brain microenvironment and may be key to neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

BBB:

Blood-brain barrier

Cldn:

Claudin

CNS:

Central nervous system

Col IV:

Collagen IV

CXCL10:

C-X-C chemokine motif 10

DAPI:

4′,6-Diamidino-2-phenylindole

CD34:

Endothelial progenitor cells

FGR:

Foetal growth restriction

Gd:

Gadolinium

GFAP:

Glial fibrillary astrocytic protein

Iba-1:

Ionised calcium-binding adaptor molecule-1

Ibu:

Ibuprofen

IgG:

Immunoglobulin G

IL:

Interleukin

MRI:

Magnetic resonance imaging

NVU:

Neurovascular unit

NG:

Normally grown

OCLN:

Occludin

P:

Postnatal day

PBS:

Phosphate-buffered saline

RT:

Room temperature

TJ:

Tight junctions

TNF:

Tumour necrosis factor

ZO-1:

Zonula occludens

References

  1. Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL (2019) Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol (Lausanne) 10:55. https://doi.org/10.3389/fendo.2019.00055

    Article  Google Scholar 

  2. Jarvis S, Glinianaia SV, Torrioli MG, Platt MJ, Miceli M, Jouk PS, Johnson A, Hutton J et al (2003) Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 362(9390):1106–1111. https://doi.org/10.1016/S0140-6736(03)14466-2

    Article  PubMed  Google Scholar 

  3. Blair EM, Nelson KB (2015) Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation. Am J Obstet Gynecol 212(4):520 e521–520 e527. https://doi.org/10.1016/j.ajog.2014.10.1103

    Article  Google Scholar 

  4. Levine TA, Grunau RE, McAuliffe FM, Pinnamaneni R, Foran A, Alderdice FA (2015) Early childhood neurodevelopment after intrauterine growth restriction: a systematic review. Pediatrics 135(1):126–141. https://doi.org/10.1542/peds.2014-1143

    Article  PubMed  Google Scholar 

  5. Korzeniewski SJ, Allred EN, Joseph RM, Heeren T, Kuban KCK, O’Shea TM, Leviton A, Investigators ES (2017) Neurodevelopment at age 10 years of children born <28 weeks with fetal growth restriction. Pediatrics 140(5). https://doi.org/10.1542/peds.2017-0697

  6. Tolsa CB, Zimine S, Warfield SK, Freschi M, Sancho Rossignol A, Lazeyras F, Hanquinet S, Pfizenmaier M, Huppi PS (2004) Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res 56(1):132–138. https://doi.org/10.1203/01.PDR.0000128983.54614.7E

    Article  PubMed  Google Scholar 

  7. Esteban FJ, Padilla N, Sanz-Cortes M, de Miras JR, Bargallo N, Villoslada P, Gratacos E (2010) Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction. NeuroImage 53(4):1225–1232. https://doi.org/10.1016/j.neuroimage.2010.07.019

    Article  PubMed  Google Scholar 

  8. Padilla N, Alexandrou G, Blennow M, Lagercrantz H, Aden U (2015) Brain growth gains and losses in extremely preterm infants at term. Cerebral cortex 25(7):1897–1905. https://doi.org/10.1093/cercor/bht431

    Article  PubMed  Google Scholar 

  9. Stolp HB, Dziegielewska KM, Ek CJ, Potter AM, Saunders NR (2005) Long-term changes in blood-brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur J Neurosci 22(11):2805–2816. https://doi.org/10.1111/j.1460-9568.2005.04483.x

    Article  CAS  PubMed  Google Scholar 

  10. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV (2018) The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21(10):1318–1331. https://doi.org/10.1038/s41593-018-0234-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barakat R, Redzic Z (2016) The role of activated microglia and resident macrophages in the neurovascular unit during cerebral ischemia: is the jury still out? Med Princ Pract 25(Suppl 1):3–14. https://doi.org/10.1159/000435858

    Article  PubMed  Google Scholar 

  12. Mallard C, Ek CJ, Vexler ZS (2018) The myth of the immature barrier systems in the developing brain: role in perinatal brain injury. J Physiol 596(23):5655–5664. https://doi.org/10.1113/JP274938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wixey JA, Lee KM, Miller SM, Goasdoue K, Colditz PB, Bjorkman ST, Chand KK (2019) Neuropathology in intrauterine growth restricted newborn piglets is associated with glial activation and proinflammatory status in the brain. J Neuroinflamm 16(1):5. https://doi.org/10.1186/s12974-018-1392-1

    Article  Google Scholar 

  14. Wixey JA, Sukumar KR, Pretorius R, Lee KM, Colditz PB, Bjorkman ST, Chand KK (2019) Ibuprofen treatment reduces the neuroinflammatory response and associated neuronal and white matter impairment in the growth restricted newborn. Front Physiol 10:541. https://doi.org/10.3389/fphys.2019.00541

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  PubMed  Google Scholar 

  16. Jolivel V, Bicker F, Biname F, Ploen R, Keller S, Gollan R, Jurek B, Birkenstock J et al (2015) Perivascular microglia promote blood vessel disintegration in the ischemic penumbra. Acta Neuropathol 129(2):279–295. https://doi.org/10.1007/s00401-014-1372-1

    Article  PubMed  Google Scholar 

  17. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D et al (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10(1):5816. https://doi.org/10.1038/s41467-019-13812-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castillo-Melendez M, Yawno T, Allison BJ, Jenkin G, Wallace EM, Miller SL (2015) Cerebrovascular adaptations to chronic hypoxia in the growth restricted lamb. International Journal of Developmental Neuroscience: the Official Journal of the International Society for Developmental Neuroscience 45:55–65. https://doi.org/10.1016/j.ijdevneu.2015.01.004

    Article  CAS  Google Scholar 

  19. Castillo-Melendez M, Yawno T, Sutherland A, Jenkin G, Wallace EM, Miller SL (2017) Effects of antenatal melatonin treatment on the cerebral vasculature in an ovine model of fetal growth restriction. Dev Neurosci 39(1-4):323–337. https://doi.org/10.1159/000471797

    Article  CAS  PubMed  Google Scholar 

  20. Bell AH, Miller SL, Castillo-Melendez M, Malhotra A (2019) The neurovascular unit: effects of brain insults during the perinatal period. Front Neurosci 13:1452. https://doi.org/10.3389/fnins.2019.01452

    Article  PubMed  Google Scholar 

  21. Ohlsson A, Walia R, Shah SS (2015) Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev 2:CD003481. https://doi.org/10.1002/14651858.CD003481.pub6

    Article  Google Scholar 

  22. Bauer R, Walter B, Brust P, Fuchtner F, Zwiener U (2003) Impact of asymmetric intrauterine growth restriction on organ function in newborn piglets. Eur J Obstet Gynecol Reprod Biol 110(Suppl 1):S40–S49

    Article  Google Scholar 

  23. Miller SM, Sullivan SM, Ireland Z, Chand KK, Colditz PB, Bjorkman ST (2016) Neonatal seizures are associated with redistribution and loss of GABAA alpha-subunits in the hypoxic-ischaemic pig. J Neurochem 139(3):471–484. https://doi.org/10.1111/jnc.13746

    Article  CAS  PubMed  Google Scholar 

  24. Bjorkman ST, Miller SM, Rose SE, Burke C, Colditz PB (2010) Seizures are associated with brain injury severity in a neonatal model of hypoxia-ischemia. Neuroscience 166(1):157–167. https://doi.org/10.1016/j.neuroscience.2009.11.067

    Article  CAS  PubMed  Google Scholar 

  25. Radlowski EC, Conrad MS, Lezmi S, Dilger RN, Sutton B, Larsen R, Johnson RW (2014) A neonatal piglet model for investigating brain and cognitive development in small for gestational age human infants. PLoS ONE 9(3):e91951. https://doi.org/10.1371/journal.pone.0091951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Conrad MS, Dilger RN, Johnson RW (2012) Brain growth of the domestic pig (Sus scrofa) from 2 to 24 weeks of age: a longitudinal MRI study. Dev Neurosci 34(4):291–298. https://doi.org/10.1159/000339311

    Article  CAS  PubMed  Google Scholar 

  27. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3(1):79–83

    Article  CAS  Google Scholar 

  28. Kalanjati VP, Wixey JA, Miller SM, Colditz PB, Bjorkman ST (2017) GABAA receptor expression and white matter disruption in intrauterine growth restricted piglets. International Journal of Developmental Neuroscience : the Official Journal of the International Society for Developmental Neuroscience 59:1–9. https://doi.org/10.1016/j.ijdevneu.2017.02.004

    Article  CAS  Google Scholar 

  29. Barzilay B, Youngster I, Batash D, Keidar R, Baram S, Goldman M, Berkovitch M, Heyman E (2012) Pharmacokinetics of oral ibuprofen for patent ductus arteriosus closure in preterm infants. Archives of Disease in Childhood Fetal and Neonatal Edition 97(2):F116–F119. https://doi.org/10.1136/adc.2011.215160

    Article  PubMed  Google Scholar 

  30. Kalanjati VP, Miller SM, Ireland Z, Colditz PB, Bjorkman ST (2011) Developmental expression and distribution of GABA(A) receptor alpha1-, alpha3- and beta2-subunits in pig brain. Dev Neurosci 33(2):99–109. https://doi.org/10.1159/000326630

    Article  CAS  PubMed  Google Scholar 

  31. Kuperman VY, Karczmar GS, Blomley MJ, Lewis MZ, Lubich LM, Lipton MJ (1996) Differentiating between T1 and T2* changes caused by gadopentetate dimeglumine in the kidney by using a double-echo dynamic MR imaging sequence. J Magn Reson Imaging 6(5):764–768. https://doi.org/10.1002/jmri.1880060509

    Article  CAS  PubMed  Google Scholar 

  32. Goasdoue K, Chand KK, Miller SM, Lee KM, Colditz PB, Wixey JA, Bjorkman ST (2019) Seizures are associated with blood-brain barrier disruption in a piglet model of neonatal hypoxic-ischaemic encephalopathy. Dev Neurosci:1–16. https://doi.org/10.1159/000499365

  33. Wixey JA, Reinebrant HE, Buller KM (2012) Post-insult ibuprofen treatment attenuates damage to the serotonergic system after hypoxia-ischemia in the immature rat brain. J Neuropathol Exp Neurol 71(12):1137–1148. https://doi.org/10.1097/NEN.0b013e318277d4c7

    Article  CAS  PubMed  Google Scholar 

  34. Bauer R, Walter B, Hoppe A, Gaser E, Lampe V, Kauf E, Zwiener U (1998) Body weight distribution and organ size in newborn swine (sus scrofa domestica) -- a study describing an animal model for asymmetrical intrauterine growth retardation. Exp Toxicol Pathol 50(1):59–65. https://doi.org/10.1016/S0940-2993(98)80071-7

    Article  CAS  PubMed  Google Scholar 

  35. Cox P, Marton T (2009) Pathological assessment of intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol 23(6):751–764. https://doi.org/10.1016/j.bpobgyn.2009.06.006

    Article  PubMed  Google Scholar 

  36. Jain R (2013) Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed 26(8):1042–1049. https://doi.org/10.1002/nbm.2994

    Article  PubMed  Google Scholar 

  37. LeBleu VS, Macdonald B, Kalluri R (2007) Structure and function of basement membranes. Exp Biol Med (Maywood) 232(9):1121–1129. https://doi.org/10.3181/0703-MR-72

    Article  CAS  Google Scholar 

  38. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR (2014) The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci 8:362. https://doi.org/10.3389/fncel.2014.00362

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stanimirovic D, Satoh K (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain pathology 10(1):113–126. https://doi.org/10.1111/j.1750-3639.2000.tb00248.x

    Article  CAS  PubMed  Google Scholar 

  40. Aly H, Abd-Rabboh L, El-Dib M, Nawwar F, Hassan H, Aaref M, Abdelrahman S, Elsayed A (2009) Ascorbic acid combined with ibuprofen in hypoxic ischemic encephalopathy: a randomized controlled trial. Journal of Perinatology : Official Journal of the California Perinatal Association 29(6):438–443. https://doi.org/10.1038/jp.2009.1

    Article  CAS  Google Scholar 

  41. Spindler KR, Hsu TH (2012) Viral disruption of the blood-brain barrier. Trends Microbiol 20(6):282–290. https://doi.org/10.1016/j.tim.2012.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saunders NR, Liddelow SA, Dziegielewska KM (2012) Barrier mechanisms in the developing brain. Front Pharmacol 3:46. https://doi.org/10.3389/fphar.2012.00046

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carty ML, Wixey JA, Reinebrant HE, Gobe G, Colditz PB, Buller KM (2011) Ibuprofen inhibits neuroinflammation and attenuates white matter damage following hypoxia–ischemia in the immature rodent brain. Brain Res 1402:9–19. https://doi.org/10.1016/j.brainres.2011.06.001

    Article  CAS  PubMed  Google Scholar 

  44. Montagne A, Toga AW, Zlokovic BV (2016) Blood-brain barrier permeability and gadolinium: benefits and potential pitfalls in research. JAMA Neurol 73(1):13–14. https://doi.org/10.1001/jamaneurol.2015.2960

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yurchenco PD, Patton BL (2009) Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des 15(12):1277–1294. https://doi.org/10.2174/138161209787846766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Urabe N, Naito I, Saito K, Yonezawa T, Sado Y, Yoshioka H, Kusachi S, Tsuji T et al (2002) Basement membrane type IV collagen molecules in the choroid plexus, pia mater and capillaries in the mouse brain. Arch Histol Cytol 65(2):133–143. https://doi.org/10.1679/aohc.65.133

    Article  CAS  PubMed  Google Scholar 

  47. Webersinke G, Bauer H, Amberger A, Zach O, Bauer HC (1992) Comparison of gene expression of extracellular matrix molecules in brain microvascular endothelial cells and astrocytes. Biochem Biophys Res Commun 189(2):877–884. https://doi.org/10.1016/0006-291x(92)92285-6

    Article  CAS  PubMed  Google Scholar 

  48. Tilling T, Engelbertz C, Decker S, Korte D, Huwel S, Galla HJ (2002) Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res 310(1):19–29. https://doi.org/10.1007/s00441-002-0604-1

    Article  CAS  PubMed  Google Scholar 

  49. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101. https://doi.org/10.1182/blood-2009-05-222364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kose N, Asashima T, Muta M, Iizasa H, Sai Y, Terasaki T, Nakashima E (2007) Altered expression of basement membrane-related molecules in rat brain pericyte, endothelial, and astrocyte cell lines after transforming growth factor-beta1 treatment. Drug Metab Pharmacokinet 22(4):255–266. https://doi.org/10.2133/dmpk.22.255

    Article  CAS  PubMed  Google Scholar 

  51. Eldahshan W, Fagan SC, Ergul A (2019) Inflammation within the neurovascular unit: focus on microglia for stroke injury and recovery. Pharmacol Res 147:104349. https://doi.org/10.1016/j.phrs.2019.104349

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T (2018) Microglia: housekeeper of the central nervous system. Cell Mol Neurobiol 38(1):53–71. https://doi.org/10.1007/s10571-017-0504-2

    Article  CAS  PubMed  Google Scholar 

  53. Clark IA, Alleva LM, Vissel B (2010) The roles of TNF in brain dysfunction and disease. Pharmacol Ther 128(3):519–548. https://doi.org/10.1016/j.pharmthera.2010.08.007

    Article  CAS  PubMed  Google Scholar 

  54. Grossmann R, Stence N, Carr J, Fuller L, Waite M, Dailey ME (2002) Juxtavascular microglia migrate along brain microvessels following activation during early postnatal development. Glia 37(3):229–240

    Article  Google Scholar 

  55. Mondo E, Becker SC, Kautzman AG, Schifferer M, Baer CE, Chen J, Huang EJ, Simons M, Schafer DP (2020) A developmental analysis of juxtavascular microglia dynamics and interactions with the vasculature. J Neurosci 40(34):6503–6521. https://doi.org/10.1523/JNEUROSCI.3006-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG (2006) Microglia potentiate damage to blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37:1087–1093

    Article  Google Scholar 

  57. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103. https://doi.org/10.1002/glia.20990

    Article  PubMed  Google Scholar 

  58. Jing L, He Q, Zhang JZ, Li PA (2013) Temporal profile of astrocytes and changes of oligodendrocyte-based myelin following middle cerebral artery occlusion in diabetic and non-diabetic rats. Int J Biol Sci 9(2):190–199. https://doi.org/10.7150/ijbs.5844

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jing L, Mai L, Zhang JZ, Wang JG, Chang Y, Dong JD, Guo FY, Li PA (2013) Diabetes inhibits cerebral ischemia-induced astrocyte activation - an observation in the cingulate cortex. Int J Biol Sci 9(9):980–988. https://doi.org/10.7150/ijbs.7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu J, Ling EA (1994) Studies of the ultrastructure and permeability of the blood-brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers. J Anat 184(Pt 2):227–237

    PubMed  PubMed Central  Google Scholar 

  61. Malhotra A, Castillo-Melendez M, Allison BJ, Sutherland AE, Nitsos I, Pham Y, Alves de Alencar Rocha AK, Fahey MC et al (2018) Neuropathology as a consequence of neonatal ventilation in premature growth-restricted lambs. Am J Physiol Regul Integr Comp Physiol 315(6):R1183–R1194. https://doi.org/10.1152/ajpregu.00171.2018

    Article  CAS  PubMed  Google Scholar 

  62. Thurgur H, Pinteaux E (2019) Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience 405:55–67. https://doi.org/10.1016/j.neuroscience.2018.06.046

    Article  CAS  PubMed  Google Scholar 

  63. Nishioku T, Matsumoto J, Dohgu S, Sumi N, Miyao K, Takata F, Shuto H, Yamauchi A, Kataoka Y (2010) Tumor necrosis factor-alpha mediates the blood-brain barrier dysfunction induced by activated microglia in mouse brain microvascular endothelial cells. J Pharmacol Sci 112(2):251–254. https://doi.org/10.1254/jphs.09292sc

    Article  CAS  PubMed  Google Scholar 

  64. Yang YM, Shang DS, Zhao WD, Fang WG, Chen YH (2013) Microglial TNF-alpha-dependent elevation of MHC class I expression on brain endothelium induced by amyloid-beta promotes T cell transendothelial migration. Neurochem Res 38(11):2295–2304. https://doi.org/10.1007/s11064-013-1138-5

    Article  CAS  PubMed  Google Scholar 

  65. Kanda H, Kobayashi K, Yamanaka H, Okubo M, Noguchi K (2017) Microglial TNFalpha induces COX2 and PGI2 synthase expression in spinal endothelial cells during neuropathic pain. eNeuro 4(2). https://doi.org/10.1523/ENEURO.0064-17.2017

  66. Krasnow SM, Knoll JG, Verghese SC, Levasseur PR, Marks DL (2017) Amplification and propagation of interleukin-1beta signaling by murine brain endothelial and glial cells. J Neuroinflammation 14(1):133. https://doi.org/10.1186/s12974-017-0908-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ et al (2019) Microglia-derived TNF-alpha mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19(24):10923–10930

    Article  CAS  Google Scholar 

  69. Lawrence T (2009) The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peng W, Wu X, Feng D, Zhang Y, Chen X, Ma C, Shen H, Li X et al (2020) Cerebral cavernous malformation 3 relieves subarachnoid hemorrhage-induced neuroinflammation in rats through inhibiting NF-kB signaling pathway. Brain Res Bull 160:74–84. https://doi.org/10.1016/j.brainresbull.2020.04.003

    Article  CAS  PubMed  Google Scholar 

  71. Li X, Su L, Zhang X, Zhang C, Wang L, Li Y, Zhang Y, He T et al (2017) Ulinastatin downregulates TLR4 and NF-kB expression and protects mouse brains against ischemia/reperfusion injury. Neurol Res 39(4):367–373. https://doi.org/10.1080/01616412.2017.1286541

    Article  CAS  PubMed  Google Scholar 

  72. Yao X, Liu S, Ding W, Yue P, Jiang Q, Zhao M, Hu F, Zhang H (2017) TLR4 signal ablation attenuated neurological deficits by regulating microglial M1/M2 phenotype after traumatic brain injury in mice. J Neuroimmunol 310:38–45. https://doi.org/10.1016/j.jneuroim.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  73. Muramatsu K, Fukuda A, Togari H, Wada Y, Nishino H (1997) Vulnerability to cerebral hypoxic-ischemic insult in neonatal but not in adult rats is in parallel with disruption of the blood-brain barrier. Stroke 28(11):2281–2288; discussion 2288-2289. https://doi.org/10.1161/01.str.28.11.2281

    Article  CAS  PubMed  Google Scholar 

  74. Zhang W, Zhang H, Mu H, Zhu W, Jiang X, Hu X, Shi Y, Leak RK et al (2016) Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury. Neurobiol Dis 91:37–46. https://doi.org/10.1016/j.nbd.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR (2007) Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 25(1):231–238. https://doi.org/10.1111/j.1460-9568.2006.05275.x

    Article  CAS  PubMed  Google Scholar 

  76. Michalak Z, Lebrun A, Di Miceli M, Rousset MC, Crespel A, Coubes P, Henshall DC, Lerner-Natoli M, Rigau V (2012) IgG leakage may contribute to neuronal dysfunction in drug-refractory epilepsies with blood-brain barrier disruption. J Neuropathol Exp Neurol 71(9):826–838. https://doi.org/10.1097/NEN.0b013e31826809a6

    Article  CAS  PubMed  Google Scholar 

  77. Malhotra A, Castillo-Melendez M, Allison BJ, Sutherland AE, Nitsos I, Pham Y, McDonald CA, Fahey MC et al (2020) Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs: UCBCs for perinatal brain injury. Stem Cell Res Ther 11(1):17. https://doi.org/10.1186/s13287-019-1526-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, Dong Y, Legeron FP et al (2017) Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140(1):184–200. https://doi.org/10.1093/brain/aww270

    Article  PubMed  Google Scholar 

  79. Merlini M, Kirabali T, Kulic L, Nitsch RM, Ferretti MT (2018) Extravascular CD3+ T cells in brains of alzheimer disease patients correlate with tau but not with amyloid pathology: an immunohistochemical study. Neurodegener Dis 18(1):49–56. https://doi.org/10.1159/000486200

    Article  CAS  PubMed  Google Scholar 

  80. Amdi C, Lynegaard JC, Thymann T, Williams AR (2020) Intrauterine growth restriction in piglets alters blood cell counts and impairs cytokine responses in peripheral mononuclear cells 24 days post-partum. Sci Rep 10(1):4683. https://doi.org/10.1038/s41598-020-61623-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA (2021) IFNgamma-producing T cells accumulate in the fetal brain following intrauterine inflammation. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.741518

  82. Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, Bourbonniere L, Larochelle C, Prat A (2015) Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74:14–24. https://doi.org/10.1016/j.nbd.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  83. Wu CH, Wang HJ, Wen CY, Lien KC, Ling EA (1997) Response of amoeboid and ramified microglial cells to lipopolysaccharide injections in postnatal rats--a lectin and ultrastructural study. Neurosci Res 27(2):133–141. https://doi.org/10.1016/s0168-0102(96)01140-6

    Article  CAS  PubMed  Google Scholar 

  84. Calvo CF, Yoshimura T, Gelman M, Mallat M (1996) Production of monocyte chemotactic protein-1 by rat brain macrophages. Eur J Neurosci 8(8):1725–1734. https://doi.org/10.1111/j.1460-9568.1996.tb01316.x

    Article  CAS  PubMed  Google Scholar 

  85. Ballabh P, Hu F, Kumarasiri M, Braun A, Nedergaard M (2005) Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr Res 58(4):791–798. https://doi.org/10.1203/01.PDR.0000180535.14093.FB

    Article  CAS  PubMed  Google Scholar 

  86. Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN et al (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Investig 127(8):3136–3151. https://doi.org/10.1172/JCI91301

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mouser PE, Head E, Ha KH, Rohn TT (2006) Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am J Pathol 168(3):936–946. https://doi.org/10.2353/ajpath.2006.050798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith CE, Soti S, Jones TA, Nakagawa A, Xue D, Yin H (2017) Non-steroidal anti-inflammatory drugs are caspase inhibitors. Cell Chem Biol 24(3):281–292. https://doi.org/10.1016/j.chembiol.2017.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660. https://doi.org/10.1083/jcb.200302070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luissint AC, Federici C, Guillonneau F, Chretien F, Camoin L, Glacial F, Ganeshamoorthy K, Couraud PO (2012) Guanine nucleotide-binding protein Galphai2: a new partner of claudin-5 that regulates tight junction integrity in human brain endothelial cells. J Cereb Blood Flow Metab 32(5):860–873. https://doi.org/10.1038/jcbfm.2011.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12):4131–4142. https://doi.org/10.1091/mbc.11.12.4131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. https://doi.org/10.1124/pr.57.2.4

    Article  CAS  PubMed  Google Scholar 

  93. Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE (2005) Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 288(6):C1231–C1241. https://doi.org/10.1152/ajpcell.00581.2004

    Article  CAS  PubMed  Google Scholar 

  94. Sladojevic N, Stamatovic SM, Johnson AM, Choi J, Hu A, Dithmer S, Blasig IE, Keep RF, Andjelkovic AV (2019) Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J Neurosci 39(4):743–757. https://doi.org/10.1523/JNEUROSCI.1432-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang S, An Q, Wang T, Gao S, Zhou G (2018) Autophagy- and MMP-2/9-mediated reduction and redistribution of ZO-1 contribute to hyperglycemia-increased blood-brain barrier permeability during early reperfusion in stroke. Neuroscience 377:126–137. https://doi.org/10.1016/j.neuroscience.2018.02.035

    Article  CAS  PubMed  Google Scholar 

  96. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596. https://doi.org/10.1038/nm.3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the facilities and scientific and technical assistance of the National Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at the Centre for Advanced Imaging, University of Queensland. The authors would also like to thank Lara Jones, Elliot Teo and John Luff for assistance with animal experimentation.

Funding

Financial support was provided by The National Health and Medical Research Council (Australia) (Grant ID: APP1147545), Royal Brisbane and Women’s Hospital Foundation, and Children’s Hospital Foundation (Grant ID 50217) grants.

Author information

Authors and Affiliations

Authors

Contributions

KC was involved in obtaining funding and responsible for all laboratory aspects of the project, data analysis, interpretation, writing and editing the manuscript. SM was involved in conducting animal experiments and editing the manuscript. GC was involved in MRI acquisition, data analysis and editing the manuscript. LM undertook all western blotting and edited the manuscript. JP was involved in obtaining funding and editing the manuscript. PC was involved in obtaining funding, critical revision and editing the manuscript. STB was involved in obtaining funding, critical revision and editing the manuscript. JW was involved in obtaining funding, study conception and design, conducting animal experiments, acquiring data, critical revision and writing the manuscript.

Corresponding author

Correspondence to Julie A. Wixey.

Ethics declarations

Ethics Approval

Animal care, handling and experiments were approved by the University of Queensland Animal Ethics Committee (MED/UQCCR/132/16/RBWH and UQCCR/249/18) and was carried out in accordance with National Health and Medical Research Council (NHMRC) guidelines (Australia) and ARRIVE guidelines.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Julie A. Wixey and Stella Tracey Bjorkman should be considered joint senior authors.

Supplementary Information

ESM 1

(DOCX 5861 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chand, K.K., Miller, S.M., Cowin, G.J. et al. Neurovascular Unit Alterations in the Growth-Restricted Newborn Are Improved Following Ibuprofen Treatment. Mol Neurobiol 59, 1018–1040 (2022). https://doi.org/10.1007/s12035-021-02654-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02654-w

Keywords

Navigation