Skip to main content

Advertisement

Log in

Müller Glia-Mediated Retinal Regeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. VEGF Inhibitors for AMD and diabetic macular edema (2015). Jama 314 (20):2184–2185

  2. Ambati J, Fowler Benjamin J (2012) Mechanisms of age-related macular degeneration. Neuron 75(1):26–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roska B, Sahel J-A (2018) Restoring vision. Nature 557(7705):359–367

    Article  CAS  PubMed  Google Scholar 

  4. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. Jama 311(18):1901–1911

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA (2015) Stem cell treatment of degenerative eye disease. Stem Cell Res 14(3):243–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gasparini SJ, Llonch S, Borsch O, Ader M (2019) Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res 69:1–37

    Article  CAS  PubMed  Google Scholar 

  7. Rakoczy EP (2017) Gene therapy for the long term treatment of wet AMD. Lancet 390(10089):6–7

    Article  PubMed  Google Scholar 

  8. Luo YH, da Cruz L (2016) The Argus(®) II retinal prosthesis system. Prog Retin Eye Res 50:89–107

    Article  PubMed  Google Scholar 

  9. Goldman D (2014) Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci 15(7):431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lenkowski JR, Raymond PA (2014) Müller glia: stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 40:94–123

    Article  PubMed  Google Scholar 

  11. Fischer AJ, Reh TA (2001) Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4(3):247–252

    Article  CAS  PubMed  Google Scholar 

  12. Fischer AJ (2005) Neural regeneration in the chick retina. Prog Retin Eye Res 24(2):161–182

    Article  PubMed  Google Scholar 

  13. Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, Wong RO, Rieke F et al (2017) Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature 548(7665):103–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, Liu X, Chang B et al (2018) Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 560(7719):484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia–neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40

    Article  CAS  PubMed  Google Scholar 

  16. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25(4):397–424

    Article  CAS  PubMed  Google Scholar 

  17. Reichenbach A, Schneider H, Leibnitz L, Reichelt W, Schaaf P, Schümann R (1989) The structure of rabbit retinal Müller (glial) cells is adapted to the surrounding retinal layers. Anat Embryol (Berl) 180(1):71–79

    Article  CAS  Google Scholar 

  18. Reichenbach A, Siegel A, Rickmann M, Wolff JR, Noone D, Robinson SR (1995) Distribution of Bergmann glial somata and processes: implications for function. J Hirnforsch 36(4):509–517

    CAS  PubMed  Google Scholar 

  19. Malchow RP, Qian HH, Ripps H (1989) gamma-Aminobutyric acid (GABA)-induced currents of skate Muller (glial) cells are mediated by neuronal-like GABAA receptors. Proc Natl Acad Sci U S A 86(11):4326–4330

    Article  CAS  PubMed  Google Scholar 

  20. Lillien L (1995) Changes in retinal cell fate induced by overexpression of EGF receptor. Nature 377(6545):158–162

    Article  CAS  PubMed  Google Scholar 

  21. Barnett NL, Pow DV (2000) Antisense knockdown of GLAST, a glial glutamate transporter, compromises retinal function. Invest Ophthalmol Vis Sci 41(2):585–591

    CAS  PubMed  Google Scholar 

  22. Linser P, Moscona AA (1979) Induction of glutamine synthetase in embryonic neural retina: localization in Müller fibers and dependence on cell interactions. Proc Natl Acad Sci U S A 76(12):6476–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pow DV, Robinson SR (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60(2):355–366

    Article  CAS  PubMed  Google Scholar 

  24. Das SR, Bhardwaj N, Kjeldbye H, Gouras P (1992) Muller cells of chicken retina synthesize 11-cis-retinol. Biochem J 285 (Pt3)(Pt3):907-913

  25. Kawasaki A, Otori Y, Barnstable CJ (2000) Müller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest Ophthalmol Vis Sci 41(11):3444–3450

    CAS  PubMed  Google Scholar 

  26. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28(6):423–451

    Article  CAS  PubMed  Google Scholar 

  27. García M, Vecino E (2003) Role of Müller glia in neuroprotection and regeneration in the retina. Histol Histopathol 18(4):1205–1218

    PubMed  Google Scholar 

  28. de Melo Reis RA, Ventura ALM, Schitine CS, de Mello MCF, de Mello FG (2008) Müller glia as an active compartment modulating nervous activity in the vertebrate retina: neurotransmitters and trophic factors. Neurochem Res 33(8):1466–1474

    Article  PubMed  Google Scholar 

  29. Wan J, Goldman D (2016) Retina regeneration in zebrafish. Curr Opin Genet Dev 40:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakami S, Imanishi Y, Palczewski K (2019) Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. FASEB J 33(3):3680–3692

    Article  CAS  PubMed  Google Scholar 

  31. Bailey TJ, Fossum SL, Fimbel SM, Montgomery JE, Hyde DR (2010) The inhibitor of phagocytosis, O-phospho-L-serine, suppresses Müller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina. Exp Eye Res 91(5):601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bejarano-Escobar R, Sánchez-Calderón H, Otero-Arenas J, Martín-Partido G, Francisco-Morcillo J (2017) Müller glia and phagocytosis of cell debris in retinal tissue. J Anat 231(4):471–483

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nomura-Komoike K, Saitoh F, Fujieda H (2020) Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep 10(1):1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rao MB, Didiano D, Patton JG (2017) Neurotransmitter-regulated regeneration in the zebrafish retina. Stem Cell Reports 8(4):831–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fischer AJ, Zelinka C, Gallina D, Scott MA, Todd L (2014) Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia 62(10):1608–1628

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gallina D, Zelinka C, Fischer AJ (2014) Glucocorticoid receptors in the retina, Müller glia and the formation of Müller glia-derived progenitors. Development 141(17):3340–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Z, Hou H, Yu S, Zhou C, Zhang X, Li N, Zhang S, Song K et al (2020) Inflammation-induced mammalian target of rapamycin signaling is essential for retina regeneration. Glia 68(1):111–127

    Article  PubMed  Google Scholar 

  38. Silva NJ, Nagashima M, Li J, Kakuk-Atkins L, Ashrafzadeh M, Hyde DR, Hitchcock PF (2020) Inflammation and matrix metalloproteinase 9 (Mmp-9) regulate photoreceptor regeneration in adult zebrafish. Glia 68(7):1445–1465

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wan J, Ramachandran R, Goldman D (2012) HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration. Dev Cell 22(2):334–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Todd L, Volkov LI, Zelinka C, Squires N, Fischer AJ (2015) Heparin-binding EGF-like growth factor (HB-EGF) stimulates the proliferation of Müller glia-derived progenitor cells in avian and murine retinas. Mol Cell Neurosci 69:54–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Medrano MP, Bejarano CA, Battista AG, Venera GD, Bernabeu RO, Faillace MP (2017) Injury-induced purinergic signalling molecules upregulate pluripotency gene expression and mitotic activity of progenitor cells in the zebrafish retina. Purinergic Signal 13(4):443–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Battista AG, Ricatti MJ, Pafundo DE, Gautier MA, Faillace MP (2009) Extracellular ADP regulates lesion-induced in vivo cell proliferation and death in the zebrafish retina. J Neurochem 111(2):600–613

    Article  CAS  PubMed  Google Scholar 

  43. Iribarne M, Hyde DR, Masai I (2019) TNFα induces Müller glia to transition from non-proliferative gliosis to a regenerative response in mutant zebrafish presenting chronic photoreceptor degeneration. Front Cell Dev Biol 7:296

    Article  PubMed  PubMed Central  Google Scholar 

  44. Conner C, Ackerman KM, Lahne M, Hobgood JS, Hyde DR (2014) Repressing notch signaling and expressing TNFα are sufficient to mimic retinal regeneration by inducing Müller glial proliferation to generate committed progenitor cells. J Neurosci 34(43):14403–14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nelson CM, Ackerman KM, O’Hayer P, Bailey TJ, Gorsuch RA, Hyde DR (2013) Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration. J Neurosci 33(15):6524–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kugler M, Schlecht A, Fuchshofer R, Kleiter I, Aigner L, Tamm ER, Braunger BM (2015) Heterozygous modulation of TGF-β signaling does not influence Müller glia cell reactivity or proliferation following NMDA-induced damage. Histochem Cell Biol 144(5):443–455

    Article  CAS  PubMed  Google Scholar 

  47. Kugler M, Schlecht A, Fuchshofer R, Schmitt SI, Kleiter I, Aigner L, Tamm ER, Braunger BM (2017) SMAD7 deficiency stimulates Müller progenitor cell proliferation during the development of the mammalian retina. Histochem Cell Biol 148(1):21–32

    Article  CAS  PubMed  Google Scholar 

  48. Sharma P, Gupta S, Chaudhary M, Mitra S, Chawla B, Khursheed MA, Saran NK, Ramachandran R (2020) Biphasic role of Tgf-β signaling during Müller glia reprogramming and retinal regeneration in zebrafish. iScience 23 (2):100817

  49. Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA (2012) β-Catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev 7:30

  50. Wan J, Zhao X-F, Vojtek A, Goldman D (2014) Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep 9(1):285–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yao K, Qiu S, Tian L, Snider William D, Flannery John G, Schaffer David V, Chen B (2016) Wnt regulates proliferation and neurogenic potential of Muller glial cells via a LIN28/Let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep 17(1):165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wen R, Tao W, Li Y, Sieving PA (2012) CNTF and retina. Prog Retin Eye Res 31(2):136–151

    Article  CAS  PubMed  Google Scholar 

  53. Zhao XF, Wan J, Powell C, Ramachandran R, Myers MG, Goldman D (2014) Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. Cell Rep 9(1):272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rhee KD, Nusinowitz S, Chao K, Yu F, Bok D, Yang X-J (2013) CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells. Proc Natl Acad Sci U S A 110(47):E4520–E4529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Senut MC, Gulati-Leekha A, Goldman D (2004) An element in the alpha1-tubulin promoter is necessary for retinal expression during optic nerve regeneration but not after eye injury in the adult zebrafish. J Neurosci 24(35):7663–7673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fausett BV, Goldman D (2006) A role for alpha1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J Neurosci 26(23):6303–6313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fimbel SM, Montgomery JE, Burket CT, Hyde DR (2007) Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. J Neurosci 27(7):1712–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vihtelic TS, Hyde DR (2000) Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. J Neurobiol 44(3):289–307

    Article  CAS  PubMed  Google Scholar 

  59. Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27(26):7028–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kassen SC, Ramanan V, Montgomery JE, T Burket C, Liu C-G, Vihtelic TS, Hyde DR (2007) Time course analysis of gene expression during light-induced photoreceptor cell death and regeneration in albino zebrafish. Dev Neurobiol 67 (8):1009–1031

  61. Kassen SC, Thummel R, Campochiaro LA, Harding MJ, Bennett NA, Hyde DR (2009) CNTF induces photoreceptor neuroprotection and Müller glial cell proliferation through two different signaling pathways in the adult zebrafish retina. Exp Eye Res 88(6):1051–1064

    Article  CAS  PubMed  Google Scholar 

  62. Nagashima M, Barthel LK, Raymond PA (2013) A self-renewing division of zebrafish Muller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development 140(22):4510–4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thummel R, Enright JM, Kassen SC, Montgomery JE, Bailey TJ, Hyde DR (2010) Pax6a and Pax6b are required at different points in neuronal progenitor cell proliferation during zebrafish photoreceptor regeneration. Exp Eye Res 90(5):572–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lahne M, Li J, Marton RM, Hyde DR (2015) Actin-cytoskeleton- and rock-mediated INM are required for photoreceptor regeneration in the adult Zebrafish retina. J Neurosci 35(47):15612–15634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramachandran R, Fausett BV, Goldman D (2010) ASCL1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, Let-7 microRNA signalling pathway. Nat Cell Biol 12(11):1101–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Powell C, Cornblath E, Elsaeidi F, Wan J, Goldman D (2016) Zebrafish Müller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons. Sci Rep 6:24851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thomas JL, Ranski AH, Morgan GW, Thummel R (2016) Reactive gliosis in the adult zebrafish retina. Exp Eye Res 143:98–109

    Article  CAS  PubMed  Google Scholar 

  68. Löffler K, Schäfer P, Völkner M, Holdt T, Karl MO (2015) Age-dependent Müller glia neurogenic competence in the mouse retina. Glia 63(10):1809–1824

    Article  PubMed  Google Scholar 

  69. Dyer MA, Cepko CL (2000) Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880

    Article  CAS  PubMed  Google Scholar 

  70. Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M (2004) Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci U S A 101(37):13654–13659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA (2008) Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci U S A 105(49):19508–19513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oswald M, Robison BD (2008) Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can J Zool 86(10):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fausett BV, Gumerson JD, Goldman D (2008) The proneural basic helix-loop-helix gene ASCL1a is required for retina regeneration. J Neurosci 28(5):1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nelson CM, Gorsuch RA, Bailey TJ, Ackerman KM, Kassen SC, Hyde DR (2012) Stat3 defines three populations of Müller glia and is required for initiating maximal müller glia proliferation in the regenerating zebrafish retina. J Comp Neurol 520(18):4294–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramachandran R, Zhao XF, Goldman D (2011) ASCL1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc Natl Acad Sci USA 108(38):15858–15863

    Article  CAS  PubMed  Google Scholar 

  76. Kaur S, Gupta S, Chaudhary M, Khursheed MA, Mitra S, Kurup AJ, Ramachandran R (2018) Let-7 microRNA-mediated regulation of Shh signaling and the gene regulatory network is essential for retina regeneration. Cell Rep 23(5):1409–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramachandran R, Zhao XF, Goldman D (2012) Insm1a-mediated gene repression is essential for the formation and differentiation of Muller glia-derived progenitors in the injured retina. Nat Cell Biol 14(10):1013–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mitra S, Sharma P, Kaur S, Khursheed MA, Gupta S, Chaudhary M, Kurup AJ, Ramachandran R (2019) Dual regulation of by Myc is necessary during zebrafish retina regeneration. J Cell Biol 218(2):489–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sharma P, Gupta S, Chaudhary M, Mitra S, Chawla B, Khursheed MA, Ramachandran R (2019) OCT4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish. Life Sci Alliance 2(5):e201900548

    Article  PubMed  PubMed Central  Google Scholar 

  80. Powell C, Elsaeidi F, Goldman D (2012) Injury-dependent Müller glia and ganglion cell reprogramming during tissue regeneration requires Apobec2a and Apobec2b. J Neurosci 32(3):1096–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  82. Elsaeidi F, Macpherson P, Mills EA, Jui J, Flannery JG, Goldman D (2018) Notch suppression collaborates with ASCL1 and LIN28 to unleash a regenerative response in fish retina, but not in mice. J Neurosci 38(9):2246–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wan J, Goldman D (2017) Opposing actions of Fgf8a on notch signaling distinguish two Muller glial cell populations that contribute to retina growth and regeneration. Cell Rep 19(4):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Raymond PA, Barthel LK, Bernardos RL, Perkowski JJ (2006) Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jadhav AP, Cho S-H, Cepko CL (2006) Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A 103(50):18998–19003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de Melo J, Zibetti C, Clark BS, Hwang W, Miranda-Angulo AL, Qian J, Blackshaw S (2016) Lhx2 is an essential factor for retinal gliogenesis and notch signaling. J Neurosci 36(8):2391–2405

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mills EA, Goldman D (2017) The regulation of notch signaling in retinal development and regeneration. Curr Pathobiol Rep 5(4):323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nelson BR, Ueki Y, Reardon S, Karl MO, Georgi S, Hartman BH, Lamba DA, Reh TA (2011) Genome-wide analysis of Müller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate. PLoS One 6(8):e22817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mitra S, Sharma P, Kaur S, Khursheed MA, Gupta S, Ahuja R, Kurup AJ, Chaudhary M, Ramachandran R (2018) Histone deacetylase-mediated Müller glia reprogramming through Her4.1-LIN28a axis is essential for retina regeneration in zebrafish. iScience 7:68-84

  90. Hayes S, Nelson BR, Buckingham B, Reh TA (2007) Notch signaling regulates regeneration in the avian retina. Dev Biol 312(1):300–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghai K, Zelinka C, Fischer AJ (2010) Notch signaling influences neuroprotective and proliferative properties of mature Müller glia. J Neurosci 30(8):3101–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Todd L, Squires N, Suarez L, Fischer AJ (2016) Jak/Stat signaling regulates the proliferation and neurogenic potential of Müller glia-derived progenitor cells in the avian retina. Sci Rep 6:35703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fischer AJ, Scott MA, Ritchey ER, Sherwood P (2009) Mitogen-activated protein kinase-signaling regulates the ability of Müller glia to proliferate and protect retinal neurons against excitotoxicity. Glia 57(14):1538–1552

    Article  PubMed  PubMed Central  Google Scholar 

  94. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25 (57):7469–7481

  95. Kara N, Kent MR, Didiano D, Rajaram K, Zhao A, Summerbell ER, Patton JG (2019) The miR-216a-Dot1l regulatory axis is necessary and sufficient for Müller glia reprogramming during retina regeneration. Cell Rep 28 (8):2037-2047.e4

  96. Gallina D, Palazzo I, Steffenson L, Todd L, Fischer AJ (2016) Wnt/β-catenin-signaling and the formation of Müller glia-derived progenitors in the chick retina. Dev Neurobiol 76(9):983–1002

    Article  CAS  PubMed  Google Scholar 

  97. Conedera FM, Pousa AMQ, Mercader N, Tschopp M, Enzmann V (2019) Retinal microglia signaling affects Müller cell behavior in the zebrafish following laser injury induction. Glia 67(6):1150–1166

    Article  PubMed  Google Scholar 

  98. Fischer AJ, Scott MA, Tuten W (2009) Mitogen-activated protein kinase-signaling stimulates Müller glia to proliferate in acutely damaged chicken retina. Glia 57(2):166–181

    Article  PubMed  PubMed Central  Google Scholar 

  99. Todd L, Fischer AJ (2015) Hedgehog signaling stimulates the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 142(15):2610–2622

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lenkowski JR, Qin Z, Sifuentes CJ, Thummel R, Soto CM, Moens CB, Raymond PA (2013) Retinal regeneration in adult zebrafish requires regulation of TGFβ signaling. Glia 61(10):1687–1697

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gallina D, Zelinka CP, Cebulla CM, Fischer AJ (2015) Activation of glucocorticoid receptors in Müller glia is protective to retinal neurons and suppresses microglial reactivity. Exp Neurol 273:114–125

  102. Tappeiner C, Maurer E, Sallin P, Bise T, Enzmann V, Tschopp M (2016) Inhibition of the TGFβ pathway enhances retinal regeneration in adult zebrafish. PLoS One 11(11):e0167073

    Article  PubMed  PubMed Central  Google Scholar 

  103. Todd L, Palazzo I, Squires N, Mendonca N, Fischer AJ (2017) BMP- and TGFβ-signaling regulate the formation of Müller glia-derived progenitor cells in the avian retina. Glia 65(10):1640–1655

    Article  PubMed  PubMed Central  Google Scholar 

  104. Thomas JL, Morgan GW, Dolinski KM, Thummel R (2018) Characterization of the pleiotropic roles of Sonic Hedgehog during retinal regeneration in adult zebrafish. Exp Eye Res 166:106–115

    Article  CAS  PubMed  Google Scholar 

  105. Sherpa T, Lankford T, McGinn TE, Hunter SS, Frey RA, Sun C, Ryan M, Robison BD et al (2014) Retinal regeneration is facilitated by the presence of surviving neurons. Dev Neurobiol 74(9):851–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun L, Li P, Carr AL, Gorsuch R, Yarka C, Li J, Bartlett M, Pfister D et al (2014) Transcription of the SCL/TAL1 interrupting locus (Stil) is required for cell proliferation in adult Zebrafish retinas. J Biol Chem 289(10):6934–6940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR (2017) SOX2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via LIN28 and ASCL1a. Exp Eye Res 161:174–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gramage E, D’Cruz T, Taylor S, Thummel R, Hitchcock PF (2015) Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. PLoS One 10(3):e0121789

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nagashima M, D’Cruz TS, Danku AE, Hesse D, Sifuentes C, Raymond PA, Hitchcock PF (2020) Midkine-a is required for cell cycle progression of Müller glia during neuronal regeneration in the vertebrate retina. J Neurosci 40(6):1232–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21):2042–2054

    Article  CAS  PubMed  Google Scholar 

  111. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Polo JM, Anderssen E, Walsh RM et al (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151(7):1617–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Powell C, Grant AR, Cornblath E, Goldman D (2013) Analysis of DNA methylation reveals a partial reprogramming of the Muller glia genome during retina regeneration. Proc Natl Acad Sci U S A 110(49):19814–19819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Powell C, Cornblath E, Goldman D (2014) Zinc-binding domain-dependent, deaminase-independent actions of apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 2 (Apobec2), mediate its effect on zebrafish retina regeneration. J Biol Chem 289(42):28924–28941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Audia JE, Campbell RM (2016) Histone modifications and cancer. Cold Spring Harb Perspect Biol 8(4):a019521

    Article  PubMed  PubMed Central  Google Scholar 

  116. Karlić R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A 107(7):2926–2931

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lawrence M, Daujat S, Schneider R (2016) Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32(1):42–56

    Article  CAS  PubMed  Google Scholar 

  118. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16(7):421–433

    Article  CAS  PubMed  Google Scholar 

  119. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207

    Article  CAS  Google Scholar 

  120. Rajaram K, Harding RL, Bailey T, Patton JG, Hyde DR (2014) Dynamic miRNA expression patterns during retinal regeneration in zebrafish: reduced dicer or miRNA expression suppresses proliferation of Müller glia-derived neuronal progenitor cells. Dev Dyn 243(12):1591–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhao C, Tao Z, Xue L, Zeng Y, Wang Y, Xu H, Yin ZQ (2017) LIN28b stimulates the reprogramming of rat Müller glia to retinal progenitors. Exp Cell Res 352(1):164–174

    Article  CAS  PubMed  Google Scholar 

  122. Murakami Y, Ishikawa K, Nakao S, Sonoda K-H (2020) Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res 74:100778

    Article  CAS  PubMed  Google Scholar 

  123. White DT, Sengupta S, Saxena MT, Xu Q, Hanes J, Ding D, Ji H, Mumm JS (2017) Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina. Proc Natl Acad Sci U S A 114(18):E3719–E3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mitchell DM, Lovel AG, Stenkamp DL (2018) Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina. J Neuroinflammation 15(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  125. Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci 22(21):9387–9398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, Fischer AJ (2016) mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development 143(11):1859–1873

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Palazzo I, Deistler K, Hoang TV, Blackshaw S, Fischer AJ (2020) NF-κB signaling regulates the formation of proliferating Müller glia-derived progenitor cells in the avian retina. Development 147(10): dev183418

  128. Srivastava D, DeWitt N (2016) In vivo cellular reprogramming: the next generation. Cell 166(6):1386–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li H, Chen G (2016) In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells. Neuron 91(4):728–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14(2):188–202

    Article  CAS  PubMed  Google Scholar 

  131. Masserdotti G, Gillotin S, Sutor B, Drechsel D, Irmler M, Jørgensen HF, Sass S, Theis FJ et al (2015) Transcriptional mechanisms of proneural factors and REST in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 17(1):74–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, Rao Z, Zhao W et al (2015) ASCL1 converts dorsal midbrain astrocytes into functional neurons in vivo. J Neurosci 35(25):9336–9355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, Björklund A, Grealish S et al (2013) Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A 110(17):7038–7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grande A, Sumiyoshi K, López-Juárez A, Howard J, Sakthivel B, Aronow B, Campbell K, Nakafuku M (2013) Environmental impact on direct neuronal reprogramming in vivo in the adult brain. Nat Commun 4:2373

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gascón S, Murenu E, Masserdotti G et al (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18(3):396–409

    Article  PubMed  Google Scholar 

  136. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, Zhang CL (2013) In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 15(10):1164–1175

    Article  CAS  PubMed  Google Scholar 

  137. Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, Johnson JE, Zhang CL (2015) SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports 4(5):780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Su Z, Niu W, Liu ML, Zou Y, Zhang CL (2014) In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 5:3338

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zhou H, Su J, Hu X et al (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181(3): 590–603.e16

  140. Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13(5):480–485

    Article  CAS  PubMed  Google Scholar 

  141. Sanges D, Romo N, Simonte G, Di Vicino U, Tahoces AD, Fernández E, Cosma MP (2013) Wnt/β-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina. Cell Rep 4(2):271–286

    Article  CAS  PubMed  Google Scholar 

  142. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolás M, Cosma MP (2016) Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest 126(8):3104–3116

    Article  PubMed  PubMed Central  Google Scholar 

  143. Pesaresi M, Bonilla-Pons SA, Simonte G, Sanges D, Di Vicino U, Cosma MP (2018) Endogenous mobilization of bone-marrow cells into the murine retina induces fusion-mediated reprogramming of Müller glia cells. EBioMedicine 30:38–51

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ryall JG, Cliff T, Dalton S, Sartorelli V (2015) Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 17(6):651–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nishimura K, Fukuda A, Hisatake K (2019) Mechanisms of the metabolic shift during somatic cell reprogramming. Int J Mol Sci 20(9):2254

    Article  CAS  PubMed Central  Google Scholar 

  146. Naik PP, Birbrair A, Bhutia SK (2019) Mitophagy-driven metabolic switch reprograms stem cell fate. Cell Mol Life Sci 76(1):27–43

    Article  CAS  PubMed  Google Scholar 

  147. Khacho M, Harris R, Slack RS (2019) Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 20(1):34–48

    Article  CAS  PubMed  Google Scholar 

  148. Dyer MA (2016) Biomedicine: an eye on retinal recovery. Nature 540(7633):350–351

    Article  CAS  PubMed  Google Scholar 

  149. Pearson RA, Gonzalez-Cordero A, West EL et al (2016) Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 7:13029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, Barnea-Cramer A, Duncan I et al (2016) Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun 7:13537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jiang D, Xiong G, Feng H et al (2019) Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics 9(8):2395–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen F, Zhou J, Li Y, Zhao Y, Yuan J, Cao Y, Wang L, Zhang Z et al (2019) YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO J 38(10):e99727

    Article  PubMed  PubMed Central  Google Scholar 

  153. Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O, Christov C, Baudin X et al (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29(5):812–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JA (2012) Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness. Aging 4(6):393–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7(6):651–655

    Article  CAS  PubMed  Google Scholar 

  156. Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE et al (2014) HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32(2):364–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pollak J, Wilken MS, Ueki Y, Cox KE, Sullivan JM, Taylor RJ, Levine EM, Reh TA (2013) ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development 140(12):2619–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ueki Y, Wilken MS, Cox KE, Chipman L, Jorstad N, Sternhagen K, Simic M, Ullom K et al (2015) Transgenic expression of the proneural transcription factor ASCL1 in Müller glia stimulates retinal regeneration in young mice. Proc Natl Acad Sci U S A 112(44):13717–13722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jorstad NL, Wilken MS, Todd L, Finkbeiner C, Nakamura P, Radulovich N, Hooper MJ, Chitsazan A, Wilkerson BA, Rieke F, Reh TA (2020) STAT signaling modifies ASCL1 chromatin binding and limits neural regeneration from Muller glia in adult mouse retina. Cell Rep 30 (7):2195–2208.e5

  161. Patel AK, Surapaneni K, Yi H, Nakamura REI, Karli SZ, Syeda S, Lee T, Hackam AS (2015) Activation of Wnt/β-catenin signaling in Muller glia protects photoreceptors in a mouse model of inherited retinal degeneration. Neuropharmacology 91:1–12

    Article  CAS  PubMed  Google Scholar 

  162. Patel AK, Park KK, Hackam AS (2017) Wnt signaling promotes axonal regeneration following optic nerve injury in the mouse. Neuroscience 343:372–383

    Article  CAS  PubMed  Google Scholar 

  163. Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M (2007) Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci 27(15):4210–4219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Del Debbio CB, Balasubramanian S, Parameswaran S, Chaudhuri A, Qiu F, Ahmad I (2010) Notch and Wnt signaling mediated rod photoreceptor regeneration by Müller cells in adult mammalian retina. PLoS One 5(8):e12425

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G (2005) REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121(4):645–657

    Article  CAS  PubMed  Google Scholar 

  166. Mampay M, Sheridan GK (2019) REST: an epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 53:100744

    Article  CAS  PubMed  Google Scholar 

  167. Yeo M, Lee SK, Lee B, Ruiz EC, Pfaff SL, Gill GN (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307(5709):596–600

    Article  CAS  PubMed  Google Scholar 

  168. Lee SW, Oh YM, Lu Y-L, Kim WK, Yoo AS (2018) MicroRNAs overcome cell fate barrier by reducing EZH2-controlled REST stability during neuronal conversion of human adult fibroblasts. Dev cell 46 (1):73-84.e7

  169. Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q et al (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152(1–2):82–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wohl SG, Reh TA (2016) miR-124-9-9* potentiates ASCL1-induced reprogramming of cultured Muller glia. Glia 64(5):743–762

    Article  PubMed  PubMed Central  Google Scholar 

  171. Moya IM, Halder G (2019) Hippo–YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol 20(4):211–226

    Article  CAS  Google Scholar 

  172. Maugeri-Saccà M, De Maria R (2018) The hippo pathway in normal development and cancer. Pharmacol Ther 186:60–72

    Article  PubMed  Google Scholar 

  173. Hamon A, García-García D, Ail D, Bitard J, Chesneau A, Dalkara D, Locker M, Roger JE, Perron M (2019) Linking YAP to Muller glia quiescence exit in the degenerative retina. Cell rep 27 (6):1712-1725.e6

  174. Hamon A, Masson C, Bitard J, Gieser L, Roger JE, Perron M (2017) Retinal degeneration triggers the activation of YAP/TEAD in reactive Müller cells. Invest Ophthalmol Vis Sci 58(4):1941–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rueda EM, Hall BM, Hill MC, Swinton PG, Tong X, Martin JF, Poché RA (2019) The hippo pathway blocks mammalian retinal Muller glial cell reprogramming. Cell rep 27 (6):1637-1649.e6

  176. Wan J, Zheng H, Xiao HL, She ZJ, Zhou GM (2007) Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun 363(2):347–354

    Article  CAS  PubMed  Google Scholar 

  177. Gu D, Wang S, Zhang S, Zhang P, Zhou G (2017) Directed transdifferentiation of Müller glial cells to photoreceptors using the sonic hedgehog signaling pathway agonist purmorphamine. Mol Med Rep 16(6):7993–8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ringuette R, Atkins M, Lagali PS, Bassett EA, Campbell C, Mazerolle C, Mears AJ, Picketts DJ et al (2016) A notch-Gli2 axis sustains hedgehog responsiveness of neural progenitors and Müller glia. Dev Biol 411(1):85–100

    Article  CAS  PubMed  Google Scholar 

  179. Ferraro S, Gomez-Montalvo AI, Olmos R, Ramirez M, Lamas M (2015) Primary cilia in rat mature Müller glia: downregulation of IFT20 expression reduces sonic hedgehog-mediated proliferation and dedifferentiation potential of Müller glia primary cultures. Cell Mol Neurobiol 35(4):533–542

    Article  CAS  PubMed  Google Scholar 

  180. Del Debbio CB, Mir Q, Parameswaran S, Mathews S, Xia X, Zheng L, Neville AJ, Ahmad I (2016) Notch signaling activates stem cell properties of Müller glia through transcriptional regulation and Skp2-mediated degradation of p27Kip1. PLoS One 11(3):e0152025

    Article  PubMed  PubMed Central  Google Scholar 

  181. Jian Q, Tao Z, Li Y, Yin ZQ (2015) Acute retinal injury and the relationship between nerve growth factor, Notch1 transcription and short-lived dedifferentiation transient changes of mammalian Müller cells. Vision Res 110:107–117

    Article  PubMed  Google Scholar 

  182. Wang Y, Smith SB, Ogilvie JM, McCool DJ, Sarthy V (2002) Ciliary neurotrophic factor induces glial fibrillary acidic protein in retinal Müller cells through the JAK/STAT signal transduction pathway. Curr Eye Res 24(4):305–312

    Article  CAS  PubMed  Google Scholar 

  183. Peterson WM, Wang Q, Tzekova R, Wiegand SJ (2000) Ciliary neurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J Neurosci 20(11):4081–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kirsch M, Trautmann N, Ernst M, Hofmann HD (2010) Involvement of gp130-associated cytokine signaling in Müller cell activation following optic nerve lesion. Glia 58(7):768–779

    Article  PubMed  Google Scholar 

  185. Close JL, Gumuscu B, Reh TA (2005) Retinal neurons regulate proliferation of postnatal progenitors and Müller glia in the rat retina via TGF beta signaling. Development 132(13):3015–3026

    Article  CAS  PubMed  Google Scholar 

  186. Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, Khaw PT, Limb GA (2007) MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25(8):2033–2043

    Article  CAS  PubMed  Google Scholar 

  187. Angbohang A, Wu N, Charalambous T, Eastlake K, Lei Y, Kim YS, Sun XH, Limb GA (2016) Downregulation of the canonical WNT signaling pathway by TGFβ1 inhibits photoreceptor differentiation of adult human Müller glia with stem cell characteristics. Stem Cells Dev 25(1):1–12

    Article  CAS  PubMed  Google Scholar 

  188. Ueki Y, Reh TA (2013) EGF stimulates Müller glial proliferation via a BMP-dependent mechanism. Glia 61(5):778–789

    Article  PubMed  PubMed Central  Google Scholar 

  189. Surzenko N, Crowl T, Bachleda A, Langer L, Pevny L (2013) SOX2 maintains the quiescent progenitor cell state of postnatal retinal Muller glia. Development 140(7):1445–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Whitney IE, Keeley PW, St. John AJ, Kautzman AG, Kay JN, Reese BE (2014) SOX2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina. J Neurosci 34(30):10109–10121

    Article  PubMed  PubMed Central  Google Scholar 

  191. Reyes-Aguirre LI, Lamas M (2016) OCT4 methylation-mediated silencing as an epigenetic barrier preventing Müller glia dedifferentiation in a murine model of retinal injury. Front Neurosci 10:523

    Article  PubMed  PubMed Central  Google Scholar 

  192. Xiao J, Li X, Chen L, Han X, Zhao W, Li L, Chen JG (2017) Apobec1 promotes neurotoxicity-induced dedifferentiation of Müller glial cells. Neurochem Res 42(4):1151–1164

    Article  CAS  PubMed  Google Scholar 

  193. Wohl SG, Hooper MJ, Reh TA (2019) MicroRNAs miR-25, Let-7 and miR-124 regulate the neurogenic potential of Müller glia in mice. Development 146 (17): dev179556

  194. Ji H-P, Xiong Y, Song W-T, Zhang E-D, Gao Z-L, Yao F, Su T, Zhou R-R et al (2017) MicroRNA-28 potentially regulates the photoreceptor lineage commitment of Müller glia-derived progenitors. Sci Rep 7(1):11374

    Article  PubMed  PubMed Central  Google Scholar 

  195. Diaz-Aparicio I, Paris I, Sierra-Torre V et al (2020) Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome. J Neurosci 40(7):1453–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci U S A 100(26):15983–15988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Vay SU, Flitsch LJ, Rabenstein M, Rogall R, Blaschke S, Kleinhaus J, Reinert N, Bach A et al (2018) The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation 15(1):226

    Article  PubMed  PubMed Central  Google Scholar 

  198. Osman AM, Rodhe J, Shen X, Dominguez CA, Joseph B, Blomgren K (2019) The secretome of microglia regulate neural stem cell function. Neuroscience 405:92–102

    Article  CAS  PubMed  Google Scholar 

  199. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, Rose-John S, Ruitenberg MJ, Vukovic J (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180 (5):833-846.e16

  200. Wang M, Ma W, Zhao L, Fariss RN, Wong WT (2011) Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 8:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Harada T, Harada C, Nakayama N, Okuyama S, Yoshida K, Kohsaka S, Matsuda H, Wada K (2000) Modification of glia-neuronal cell interactions prevents photoreceptor apoptosis during light-induced retinal degeneration. Neuron 26(2):533–541

    Article  CAS  PubMed  Google Scholar 

  202. Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K et al (2002) Microglia–Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci 22(21):9228–9236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Imitola J (2019) Regenerative neuroimmunology: the impact of immune and neural stem cell interactions for translation in neurodegeneration and repair. J Neuroimmunol 331:1–3

    Article  CAS  PubMed  Google Scholar 

  204. Fischer AJ, Reh TA (2003) Potential of Müller glia to become neurogenic retinal progenitor cells. Glia 43(1):70–76

    Article  PubMed  Google Scholar 

  205. Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, Cepko CL (2008) The transcriptome of retinal Müller glial cells. J Comp Neurol 509(2):225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Reichenbach A, Bringmann A (2020) Glia of the human retina. Glia 68(4):768–796

    Article  PubMed  Google Scholar 

  207. Bringmann A, Syrbe S, Görner K, Kacza J, Francke M, Wiedemann P, Reichenbach A (2018) The primate fovea: structure, function and development. Prog Retin Eye Res 66:49–84

    Article  PubMed  Google Scholar 

  208. Lu Y, Yi W, Wu Q, Zhong S, Zuo Z, Zhao F, Zhang M, Tsai N, Zhuo Y, He S, Zhang J, Duan X, Wang X, Xue T (2018) Single-cell RNA-seq analysis maps the development of human fetal retina. bioRxiv:423830

  209. Xiao D, Qiu S, Huang X, Zhang R, Lei Q, Huang W, Chen H, Gou B, Tie X, Liu S, Liu Y, Jin K, Xiang M (2019) Directed robust generation of functional retinal ganglion cells from Müller glia. bioRxiv:735357

  210. Lu Y, Zhang K (2018) Cellular reprogramming in the retina-seeing the light. N Engl J Med 378(11):1059–1060

    Article  PubMed  Google Scholar 

  211. Lin S, Guo J, Chen S (2017) Transcriptome and DNA methylome signatures associated with retinal Müller glia development, injury response, and aging. Invest Ophthalmol Vis Sci 60(13):4436–4450

    Article  Google Scholar 

  212. Wang W, Hu K, Zeng A, Alegre D, Hu D, Gotting K, Ortega Granillo A, Wang Y, et al (2020). Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369(6508): eaaz3090

  213. Hoang T, Wang J, Boyd P, Wang F, Santiago C, Jiang L, Yoo S, Lahne M, et al (2020). Gene regulatory networks controlling vertebrate retinal regeneration. Science 370(6519): eabb8598

Download references

Funding

This study was supported by the National Key R&D Program of China (2018YFA0107302), the National Natural Science Foundation of China (No. 31930068, 81873688).

Author information

Authors and Affiliations

Authors

Contributions

Hui Gao, Luodan A, and Haiwei Xu write the review. Xiaona Huang and Xi Chen revise the review.

Corresponding author

Correspondence to Haiwei Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., A, L., Huang, X. et al. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 58, 2342–2361 (2021). https://doi.org/10.1007/s12035-020-02274-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02274-w

Keywords

Navigation