Skip to main content

Advertisement

Log in

Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic Targets

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cholesterol is an indispensable component of the cell membrane and plays vital roles in critical physiological processes. Brain cholesterol accounts for a large portion of total cholesterol in the human body, and its content must be tightly regulated to ensure normal brain function. Disorders of cholesterol metabolism in the brain are linked to neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and other atypical cognitive deficits that arise at old age. However, the specific role of cholesterol metabolism disorder in the pathogenesis of neurodegenerative diseases has not been fully elucidated. Statins that are a class of lipid-lowering drugs have been reported to have a positive effect on neurodegenerative diseases. Herein, we reviewed the physiological and pathological conditions of cholesterol metabolism and discussed the possible mechanisms of cholesterol metabolism and statin therapy in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

HD:

Huntington’s disease

BBB:

Blood–brain barrier

ER:

Endoplasmic reticulum

HMG-CoA:

3-Hydroxy-3-methylglutaryl CoA

DE:

Desmosterol

DHCR24:

24-Dehydrocholesterol reductase

DHCR7:

7-Dehydrocholesterol reductase

LT:

Lathosterol

7D:

7-Dehydrocholesterol

PM:

Plasma membrane

SREBP-2:

Sterol regulatory element-binding protein

SCAP:

SREBP cleavage-activating protein

SRE:

Sterol regulatory elements

HDL:

High-density lipoprotein cholesterol

LDL:

Low-density lipoprotein cholesterol

VLDL:

Very-low-density lipoprotein cholesterol

APOE:

Apolipoprotein E

ABC transporters:

ATP-binding cassette (ABC) transporters

LDLR:

Low-density lipoprotein family receptors

ACAT1/SOAT1:

Acyltransferase 1

CSF:

Cerebrospinal fluid

24-OHC:

24-Hydroxycholesterol

Aβ:

Amyloid-β

ACID:

APP intracellular domain

APP:

Amyloid precursor protein

27-OHC:

27-Hydroxylcholesterol

CYP27A1:

Sterol 27-hydroxylase

RAS:

Renin–angiotensin system

PLTP:

Phospholipid transporters

SNpc:

Substantia nigra pars compacta

LBs:

Lewy bodies

ApoA1:

Apolipoprotein A-I

PON1:

Oxygenase 1

VMAT2:

Vesicular monoamine transporter 2

DAT:

Dopamine transporter

mβCD:

Methyl-β-cyclodextrin

LXRs:

Liver X receptors

TH:

Tyrosine hydroxylase

NMDAR1:

N-methyl-d-aspartic acid receptor 1

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

NO:

Nitric oxide

References

  1. Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397. https://doi.org/10.1194/jlr.R400004-JLR200

    Article  CAS  PubMed  Google Scholar 

  2. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5:746–755. https://doi.org/10.1242/dmm.010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berg JM, Tymoczko JL, Stryer L (2002) The complex regulation of cholesterol biosynthesis takes place at several levels. In: Biochemistry, 5th edn. W.H. Freeman, New York

    Google Scholar 

  4. Nieweg K, Schaller H, Pfrieger FW (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 109:125–134. https://doi.org/10.1111/j.1471-4159.2009.05917.x

    Article  CAS  PubMed  Google Scholar 

  5. Saher G, Brügger B, Lappe-Siefke C et al (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475. https://doi.org/10.1038/nn1426

    Article  CAS  PubMed  Google Scholar 

  6. Quan G, Xie C, Dietschy JM, Turley SD (2003) Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res Dev Brain Res 146:87–98. https://doi.org/10.1016/j.devbrainres.2003.09.015

    Article  CAS  PubMed  Google Scholar 

  7. DeGrella RF, Simoni RD (1982) Intracellular transport of cholesterol to the plasma membrane. J Biol Chem 257:14256–14262

    Article  CAS  Google Scholar 

  8. Kaplan MR, Simoni RD (1985) Transport of cholesterol from the endoplasmic reticulum to the plasma membrane. J Cell Biol 101:446–453. https://doi.org/10.1083/jcb.101.2.446

    Article  CAS  PubMed  Google Scholar 

  9. Heino S, Lusa S, Somerharju P et al (2000) Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proc Natl Acad Sci 97:8375–8380. https://doi.org/10.1073/pnas.140218797

    Article  CAS  PubMed  Google Scholar 

  10. Leoni V, Caccia C (2015) The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta 1851:1095–1105. https://doi.org/10.1016/j.bbalip.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  11. Anchisi L, Dessì S, Pani A, Mandas A (2013) Cholesterol homeostasis: a key to prevent or slow down neurodegeneration. Front Physiol 3:486. https://doi.org/10.3389/fphys.2012.00486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martin MG, Ahmed T, Korovaichuk A et al (2014) Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents. EMBO Mol Med 6:902–917. https://doi.org/10.15252/emmm.201303711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim WS, Weickert CS, Garner B (2008) Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 104:1145–1166. https://doi.org/10.1111/j.1471-4159.2007.05099.x

    Article  CAS  PubMed  Google Scholar 

  14. Herz J (2009) Apolipoprotein E receptors in the nervous system. Curr Opin Lipidol 20:190–196. https://doi.org/10.1097/MOL.0b013e32832d3a10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pottier C, Hannequin D, Coutant S et al (2012) High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry 17:875–879. https://doi.org/10.1038/mp.2012.15

    Article  CAS  PubMed  Google Scholar 

  16. Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288:8935–8951. https://doi.org/10.1074/jbc.M112.400358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rensen P, Jong MC, Vark LC et al (2000) Internalization of apolipoprotein E by hepatocytes via the LDL receptor is coupled to retroendocytosis. Atherosclerosis 151:239. https://doi.org/10.1016/S0021-9150(00)81081-3

    Article  Google Scholar 

  18. Vance JE, Karten B (2014) Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 55:1609–1621. https://doi.org/10.1194/jlr.R047837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bryleva EY, Rogers MA, Chang CCY et al (2010) ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci 107:3081–3086. https://doi.org/10.1073/pnas.0913828107

    Article  PubMed  Google Scholar 

  20. Liu B, Turley SD, Burns DK et al (2009) Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1-/- mouse. Proc Natl Acad Sci 106:2377–2382. https://doi.org/10.1073/pnas.0810895106

    Article  PubMed  Google Scholar 

  21. Panzenboeck U et al (2002) ABCA1 and SR-BI are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 277:42781–42789

    Article  CAS  Google Scholar 

  22. Lange Y, Ye J, Strebel F (1995) Movement of 25-hydroxycholesterol from the plasma membrane to the rough endoplasmic reticulum in cultured hepatoma cells. J Lipid Res 36:1092–1097

    Article  CAS  Google Scholar 

  23. Meaney S, Bodin K, Diczfalusy U, Björkhem I (2002) On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J Lipid Res 43:2130–2135. https://doi.org/10.1194/jlr.M200293-JLR200

    Article  CAS  PubMed  Google Scholar 

  24. Lund EG, Xie C, Kotti T et al (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278:22980–22988. https://doi.org/10.1074/jbc.M303415200

    Article  CAS  PubMed  Google Scholar 

  25. Ramirez DMO, Andersson S, Russell DW (2010) Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J Comp Neurol 507(5):1676–1693

    Article  Google Scholar 

  26. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781. https://doi.org/10.1126/science.1132814

    Article  CAS  PubMed  Google Scholar 

  27. Kivipelto M, Solomon A (2006) Cholesterol as a risk factor for Alzheimer’s disease - epidemiological evidence. Acta Neurol Scand Suppl 185:50–57. https://doi.org/10.1111/j.1600-0404.2006.00685.x

    Article  CAS  PubMed  Google Scholar 

  28. Solomon A, Kåreholt I, Ngandu T et al (2007) Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology 68:751–756. https://doi.org/10.1212/01.wnl.0000256368.57375.b7

    Article  CAS  PubMed  Google Scholar 

  29. Reed B, Villeneuve S, Mack W et al (2014) Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol 71:195. https://doi.org/10.1001/jamaneurol.2013.5390

    Article  PubMed  PubMed Central  Google Scholar 

  30. Popp J, Meichsner S, Kölsch H et al (2013) Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease. Biochem Pharmacol 86:37–42. https://doi.org/10.1016/j.bcp.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  31. Kivipelto M, Ngandu T, Fratiglioni L et al (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62:1556–1560. https://doi.org/10.1001/archneur.62.10.1556

    Article  PubMed  Google Scholar 

  32. Kuo YM, Emmerling MR, Bisgaier CL et al (1998) Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain abeta 1-42 levels. Biochem Biophys Res Commun 252:711–715. https://doi.org/10.1006/bbrc.1998.9652

    Article  CAS  PubMed  Google Scholar 

  33. Popp J, Lewczuk P, Kölsch H et al (2012) Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer’s disease. J Neurochem 123:310–316. https://doi.org/10.1111/j.1471-4159.2012.07893.x

    Article  CAS  PubMed  Google Scholar 

  34. Reitz C, Tang M-X, Manly J et al (2008) Plasma lipid levels in the elderly are not associated with the risk of mild cognitive impairment. Dement Geriatr Cogn Disord 25:232–237. https://doi.org/10.1159/000115847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mielke MM, Zandi PP, Sjögren M et al (2005) High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology 64:1689–1695. https://doi.org/10.1212/01.WNL.0000161870.78572.A5

    Article  CAS  PubMed  Google Scholar 

  36. Anstey KJ, Ashby-Mitchell K, Peters R (2017) Updating the evidence on the association between serum cholesterol and risk of late-life dementia: review and meta-analysis. J Alzheimers Dis 56:215–228. https://doi.org/10.3233/JAD-160826

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heverin M, Bogdanovic N, Lütjohann D et al (2004) Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 45:186–193. https://doi.org/10.1194/jlr.M300320-JLR200

    Article  CAS  PubMed  Google Scholar 

  38. Mason RP, Shoemaker WJ, Shajenko L et al (1992) Evidence for changes in the Alzheimer’s disease brain cortical membrane structure mediated by cholesterol. Neurobiol Aging 13:413–419. https://doi.org/10.1016/0197-4580(92)90116-f

    Article  CAS  PubMed  Google Scholar 

  39. Sparks DL (1997) Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer’s disease? Ann N Y Acad Sci 826:128–146. https://doi.org/10.1111/j.1749-6632.1997.tb48466.x

    Article  CAS  PubMed  Google Scholar 

  40. Eckert GP, Cairns NJ, Maras A et al (2000) Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease. Dement Geriatr Cogn Disord 11:181–186. https://doi.org/10.1159/000017234

    Article  CAS  PubMed  Google Scholar 

  41. Xiong H, Callaghan D, Jones A et al (2008) Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production. Neurobiol Dis 29:422–437. https://doi.org/10.1016/j.nbd.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  42. Papassotiropoulos A, Lütjohann D, Bagli M et al (2002) 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res 36:27–32. https://doi.org/10.1016/s0022-3956(01)00050-4

    Article  CAS  PubMed  Google Scholar 

  43. Testa G, Staurenghi E, Zerbinati C et al (2016) Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol 10:24–33. https://doi.org/10.1016/j.redox.2016.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu A, Zhang X, Wang Y et al (2019) Longitudinal and nonlinear relations of dietary and serum cholesterol in midlife with cognitive decline: results from EMCOA study. Mol Neurodegener 14:51. https://doi.org/10.1186/s13024-019-0353-1

    Article  CAS  Google Scholar 

  45. Whitmer RA, Sidney S, Selby J et al (2005) Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64:277–281. https://doi.org/10.1212/01.WNL.0000149519.47454.F2

    Article  CAS  PubMed  Google Scholar 

  46. Kirsch C, Eckert GP, Koudinov AR, Müller WE (2003) Brain cholesterol, statins and Alzheimer’s disease. Pharmacopsychiatry 36(Suppl 2):S113–S119. https://doi.org/10.1055/s-2003-43058

    Article  CAS  PubMed  Google Scholar 

  47. Thériault P, ElAli A, Rivest S (2016) High fat diet exacerbates Alzheimer’s disease-related pathology in APPswe/PS1 mice. Oncotarget 7:67808–67827. https://doi.org/10.18632/oncotarget.12179

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ledreux A, Wang X, Schultzberg M et al (2016) Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats. Behav Brain Res 312:294–304. https://doi.org/10.1016/j.bbr.2016.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walker JM, Dixit S, Saulsberry AC et al (2017) Reversal of high fat diet-induced obesity improves glucose tolerance, inflammatory response, β-amyloid accumulation and cognitive decline in the APP/PSEN1 mouse model of Alzheimer’s disease. Neurobiol Dis 100:87–98. https://doi.org/10.1016/j.nbd.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lehtisalo J, Levälahti E, Lindström J et al (2019) Dietary changes and cognition over 2 years within a multidomain intervention trial—the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Dement 15:410–417. https://doi.org/10.1016/j.jalz.2018.10.001

    Article  PubMed  Google Scholar 

  51. Ngandu T, Lehtisalo J, Solomon A et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385:2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5

    Article  PubMed  Google Scholar 

  52. Rosenberg A, Ngandu T, Rusanen M et al (2018) Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: the FINGER trial. Alzheimers Dement J Alzheimers Assoc 14:263–270. https://doi.org/10.1016/j.jalz.2017.09.006

    Article  Google Scholar 

  53. Pfrieger FW (2003) Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol Life Sci CMLS 60:1158–1171. https://doi.org/10.1007/s00018-003-3018-7

    Article  CAS  PubMed  Google Scholar 

  54. Wood WG, Igbavboa U, Eckert GP et al (2005) Is hypercholesterolemia a risk factor for Alzheimer’s disease? Mol Neurobiol 31:185–192. https://doi.org/10.1385/MN:31:1-3:185

    Article  CAS  PubMed  Google Scholar 

  55. Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20:4–21

    CAS  PubMed  Google Scholar 

  56. Hayashi H, Igbavboa U, Hamanaka H et al (2002) Cholesterol is increased in the exofacial leaflet of synaptic plasma membranes of human apolipoprotein E4 knock-in mice. Neuroreport 13:383–386. https://doi.org/10.1097/00001756-200203250-00004

    Article  CAS  PubMed  Google Scholar 

  57. Igbavboa U, Avdulov NA, Schroeder F, Wood WG (1996) Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J Neurochem 66:1717–1725. https://doi.org/10.1046/j.1471-4159.1996.66041717.x

    Article  CAS  PubMed  Google Scholar 

  58. Burns MP, Igbavboa U, Wang L et al (2006) Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. NeuroMolecular Med 8:319–328. https://doi.org/10.1385/nmm:8:3:319

    Article  CAS  PubMed  Google Scholar 

  59. Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101:2070–2075. https://doi.org/10.1073/pnas.0305799101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kang J, Lemaire HG, Unterbeck A et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736. https://doi.org/10.1038/325733a0

    Article  CAS  PubMed  Google Scholar 

  61. Kojro E, Gimpl G, Lammich S et al (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proc Natl Acad Sci U S A 98:5815–5820. https://doi.org/10.1073/pnas.081612998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seubert P, Oltersdorf T, Lee MG et al (1993) Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature 361:260–263. https://doi.org/10.1038/361260a0

    Article  CAS  PubMed  Google Scholar 

  63. Vetrivel KS, Thinakaran G (2010) Membrane rafts in Alzheimer’s disease beta-amyloid production. Biochim Biophys Acta 1801:860–867. https://doi.org/10.1016/j.bbalip.2010.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marquer C, Devauges V, Cossec J-C et al (2011) Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J Off Publ Fed Am Soc Exp Biol 25:1295–1305. https://doi.org/10.1096/fj.10-168633

    Article  CAS  Google Scholar 

  65. Barrett PJ, Song Y, Van Horn WD et al (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171. https://doi.org/10.1126/science.1219988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Makarov M, Grossard M (2008) Corrections and clarifications: efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science 321:912–912

    Google Scholar 

  67. van der Kant R, Langness VF, Herrera CM et al (2019) Cholesterol metabolism is a druggable axis that independently regulates tau and amyloid-β in iPSC-derived Alzheimer’s disease neurons. Cell Stem Cell 24:363-375.e9. https://doi.org/10.1016/j.stem.2018.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kunkle BW, Grenier-Boley B, Sims R et al (2019) Author correction: genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:1423–1424. https://doi.org/10.1038/s41588-019-0495-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat Rev Neurol 9:106–118. https://doi.org/10.1038/nrneurol.2012.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41(10):1088–1093

    Article  CAS  Google Scholar 

  71. Lambert J-C, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099. https://doi.org/10.1038/ng.439

    Article  CAS  PubMed  Google Scholar 

  72. Corder EH, Saunders AM, Risch NJ et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184. https://doi.org/10.1038/ng0694-180

    Article  CAS  PubMed  Google Scholar 

  73. Poirier J (1994) Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 17:525–530. https://doi.org/10.1016/0166-2236(94)90156-2

    Article  CAS  PubMed  Google Scholar 

  74. Rapp A, Gmeiner B, Hüttinger M (2006) Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 88:473–483. https://doi.org/10.1016/j.biochi.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  75. Gong J-S, Kobayashi M, Hayashi H et al (2002) Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J Biol Chem 277:29919–29926. https://doi.org/10.1074/jbc.M203934200

    Article  CAS  PubMed  Google Scholar 

  76. Ellis RJ, Olichney JM, Thal LJ et al (1996) Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, part XV. Neurology 46:1592–1596. https://doi.org/10.1212/wnl.46.6.1592

    Article  CAS  PubMed  Google Scholar 

  77. Fleisher AS, Chen K, Liu X et al (2013) Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging 34:1–12. https://doi.org/10.1016/j.neurobiolaging.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  78. Brecht WJ, Harris FM, Chang S et al (2004) Neuron-specific apolipoprotein E4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 24:2527–2534. https://doi.org/10.1523/JNEUROSCI.4315-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thambisetty M, Simmons A, Velayudhan L et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67:739–748. https://doi.org/10.1001/archgenpsychiatry.2010.78

    Article  PubMed  PubMed Central  Google Scholar 

  80. De Roeck A, Van Broeckhoven C, Sleegers K (2019) The role of ABCA7 in Alzheimer’s disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol (Berl) 138:201–220. https://doi.org/10.1007/s00401-019-01994-1

    Article  CAS  Google Scholar 

  81. Kunkle BW, Grenier-Boley B, Sims R et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430. https://doi.org/10.1038/s41588-019-0358-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nugent AA, Lin K, van Lengerich B et al (2020) TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105:837-854.e9. https://doi.org/10.1016/j.neuron.2019.12.007

    Article  CAS  PubMed  Google Scholar 

  83. Björkhem I (2006) Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med 260:493–508. https://doi.org/10.1111/j.1365-2796.2006.01725.x

    Article  CAS  PubMed  Google Scholar 

  84. Gamba P, Testa G, Gargiulo S et al (2015) Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci 7:119. https://doi.org/10.3389/fnagi.2015.00119

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ali Z, Heverin M, Olin M et al (2013) On the regulatory role of side-chain hydroxylated oxysterols in the brain. Lessons from CYP27A1 transgenic and Cyp27a1−/− mice. J Lipid Res 54:1033–1043. https://doi.org/10.1194/jlr.M034124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saeed AA, Genové G, Li T et al (2014) Effects of a disrupted blood-brain barrier on cholesterol homeostasis in the brain. J Biol Chem 289:23712–23722. https://doi.org/10.1074/jbc.M114.556159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lütjohann D, von Bergmann K (2003) 24S-hydroxycholesterol: a marker of brain cholesterol metabolism. Pharmacopsychiatry 36(Suppl 2):S102–S106. https://doi.org/10.1055/s-2003-43053

    Article  PubMed  Google Scholar 

  88. Maioli S, Båvner A, Ali Z et al (2013) Is it possible to improve memory function by upregulation of the cholesterol 24S-hydroxylase (CYP46A1) in the brain? PLoS One 8:e68534. https://doi.org/10.1371/journal.pone.0068534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown J, Theisler C, Silberman S et al (2004) Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem 279:34674–34681. https://doi.org/10.1074/jbc.M402324200

    Article  CAS  PubMed  Google Scholar 

  90. Famer D, Meaney S, Mousavi M et al (2007) Regulation of alpha- and beta-secretase activity by oxysterols: cerebrosterol stimulates processing of APP via the alpha-secretase pathway. Biochem Biophys Res Commun 359:46–50. https://doi.org/10.1016/j.bbrc.2007.05.033

    Article  CAS  PubMed  Google Scholar 

  91. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603. https://doi.org/10.1172/JCI16390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meaney S, Heverin M, Panzenboeck U et al (2007) Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid. J Lipid Res 48:944–951. https://doi.org/10.1194/jlr.M600529-JLR200

    Article  CAS  PubMed  Google Scholar 

  93. Shafaati M, Marutle A, Pettersson H et al (2011) Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J Lipid Res 52:1004–1010. https://doi.org/10.1194/jlr.M014548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yau JLW, Rasmuson S, Andrew R et al (2003) Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer’s disease. Neuroscience 121:307–314. https://doi.org/10.1016/s0306-4522(03)00438-x

    Article  CAS  PubMed  Google Scholar 

  95. Mateos L, Akterin S, Gil-Bea F-J et al (2009) Activity-regulated cytoskeleton-associated protein in rodent brain is down-regulated by high fat diet in vivo and by 27-hydroxycholesterol in vitro. Brain Pathol Zurich Switz 19:69–80. https://doi.org/10.1111/j.1750-3639.2008.00174.x

    Article  CAS  Google Scholar 

  96. Björkhem I, Cedazo-Minguez A, Leoni V, Meaney S (2009) Oxysterols and neurodegenerative diseases. Mol Asp Med 30:171–179. https://doi.org/10.1016/j.mam.2009.02.001

    Article  CAS  Google Scholar 

  97. Ismail M-A-M, Mateos L, Maioli S et al (2017) 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation. J Exp Med 214:699–717. https://doi.org/10.1084/jem.20160534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heverin M, Maioli S, Pham T et al (2015) 27-Hydroxycholesterol mediates negative effects of dietary cholesterol on cognition in mice. Behav Brain Res 278:356–359. https://doi.org/10.1016/j.bbr.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  99. Mateos L, Ismail M-A-M, Gil-Bea F-J et al (2011) Upregulation of brain renin angiotensin system by 27-hydroxycholesterol in Alzheimer’s disease. J Alzheimers Dis JAD 24:669–679. https://doi.org/10.3233/JAD-2011-101512

    Article  CAS  PubMed  Google Scholar 

  100. Cedazo-Mínguez A, Ismail M-A-M, Mateos L (2011) Plasma cholesterol and risk for late-onset Alzheimer’s disease. Expert Rev Neurother 11:495–498. https://doi.org/10.1586/ern.11.36

    Article  CAS  PubMed  Google Scholar 

  101. Mateos L, Ismail M-A-M, Gil-Bea F-J et al (2011) Side chain-oxidized oxysterols regulate the brain renin-angiotensin system through a liver X receptor-dependent mechanism. J Biol Chem 286:25574–25585. https://doi.org/10.1074/jbc.M111.236877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Marwarha G, Dasari B, Prasanthi JRP et al (2010) Leptin reduces the accumulation of Aβ and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheimers Dis JAD 19:1007–1019. https://doi.org/10.3233/JAD-2010-1298

    Article  CAS  PubMed  Google Scholar 

  103. Fassbender K, Simons M, Bergmann C et al (2001) Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci U S A 98:5856–5861. https://doi.org/10.1073/pnas.081620098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lin F-C, Chuang Y-S, Hsieh H-M et al (2015) Early statin use and the progression of Alzheimer disease. Medicine (Baltimore) 94:47. https://doi.org/10.1097/MD.0000000000002143

    Article  CAS  Google Scholar 

  105. Kurinami H, Sato N, Shinohara M et al (2008) Prevention of amyloid beta-induced memory impairment by fluvastatin, associated with the decrease in amyloid beta accumulation and oxidative stress in amyloid beta injection mouse model. Int J Mol Med 21:531–537

    CAS  PubMed  Google Scholar 

  106. Li L, Cao D, Kim H et al (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60:729–739. https://doi.org/10.1002/ana.21053

    Article  CAS  PubMed  Google Scholar 

  107. Petanceska SS, DeRosa S, Olm V et al (2002) Statin therapy for Alzheimer’s disease: will it work? J Mol Neurosci MN 19:155–161. https://doi.org/10.1007/s12031-002-0026-2

    Article  CAS  PubMed  Google Scholar 

  108. Chauhan NB, Siegel GJ, Feinstein DL (2004) Effects of lovastatin and pravastatin on amyloid processing and inflammatory response in TgCRND8 brain. Neurochem Res 29:1897–1911. https://doi.org/10.1023/b:nere.0000042217.90204.8d

    Article  CAS  PubMed  Google Scholar 

  109. Paris D, Townsend KP, Humphrey J et al (2002) Statins inhibit A beta-neurotoxicity in vitro and A beta-induced vasoconstriction and inflammation in rat aortae. Atherosclerosis 161:293–299. https://doi.org/10.1016/s0021-9150(01)00660-8

    Article  CAS  PubMed  Google Scholar 

  110. Abad-Rodriguez J, Ledesma MD, Craessaerts K et al (2004) Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 167:953–960. https://doi.org/10.1083/jcb.200404149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Puglielli L, Konopka G, Pack-Chung E et al (2001) Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 3:905–912. https://doi.org/10.1038/ncb1001-905

    Article  CAS  PubMed  Google Scholar 

  112. Hutter-Paier B, Huttunen HJ, Puglielli L et al (2004) The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron 44:227–238. https://doi.org/10.1016/j.neuron.2004.08.043

    Article  CAS  PubMed  Google Scholar 

  113. Wolozin B, Kellman W, Ruosseau P et al (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57:1439–1443. https://doi.org/10.1001/archneur.57.10.1439

    Article  CAS  PubMed  Google Scholar 

  114. Wolozin B, Wang SW, Li N-C et al (2007) Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med 5:20. https://doi.org/10.1186/1741-7015-5-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Haag MDM, Hofman A, Koudstaal PJ et al (2009) Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry 80:13–17. https://doi.org/10.1136/jnnp.2008.150433

    Article  CAS  PubMed  Google Scholar 

  116. Feldman HH, Doody RS, Kivipelto M et al (2010) Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 74:956–964. https://doi.org/10.1212/WNL.0b013e3181d6476a

    Article  CAS  PubMed  Google Scholar 

  117. Sparks DL, Sabbagh MN, Connor DJ et al (2005) Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 62:753–757. https://doi.org/10.1001/archneur.62.5.753

    Article  PubMed  Google Scholar 

  118. Friedhoff LT, Cullen EI, Geoghagen NS, Buxbaum JD (2001) Treatment with controlled-release lovastatin decreases serum concentrations of human beta-amyloid (A beta) peptide. Int J Neuropsychopharmacol 4:127–130. https://doi.org/10.1017/S1461145701002310

    Article  CAS  PubMed  Google Scholar 

  119. Rockwood K, Kirkland S, Hogan DB et al (2002) Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 59:223–227. https://doi.org/10.1001/archneur.59.2.223

    Article  PubMed  Google Scholar 

  120. Rea TD, Breitner JC, Psaty BM et al (2005) Statin use and the risk of incident dementia: the Cardiovascular Health Study. Arch Neurol 62:1047–1051. https://doi.org/10.1001/archneur.62.7.1047

    Article  PubMed  Google Scholar 

  121. Wahner AD, Bronstein JM, Bordelon YM, Ritz B (2008) Statin use and the risk of Parkinson’s disease. Neurology 70:1418–1422. https://doi.org/10.1212/01.wnl.0000286942.14552.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm Vienna Austria 1996 124:901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  Google Scholar 

  123. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet Lond Engl 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  CAS  Google Scholar 

  124. Sweeney P, Park H et al (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 6:6. https://doi.org/10.1186/s40035-017-0077-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR (2018) Parkinson disease from Mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell Mol Neurobiol 38:1153–1178. https://doi.org/10.1007/s10571-018-0587-4

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wei Q, Wang H, Tian Y et al (2013) Reduced serum levels of triglyceride, very low density lipoprotein cholesterol and apolipoprotein B in Parkinson’s disease patients. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0075743

  127. Huang X, Chen H, Miller WC et al (2007) Lower low density lipid cholesterol levels are associated with Parkinson’s disease. Mov Disord Off J Mov Disord Soc 22:377–381. https://doi.org/10.1002/mds.21290

    Article  Google Scholar 

  128. Swanson CR, Berlyand Y, Xie SX et al (2015) Plasma ApoA1 associates with age at onset and motor severity in early Parkinson disease patients. Mov Disord Off J Mov Disord Soc 30:1648–1656. https://doi.org/10.1002/mds.26290

    Article  CAS  Google Scholar 

  129. Qiang JK, Wong YC, Siderowf A et al (2013) Plasma apolipoprotein A1 as a biomarker for Parkinson’s disease. Ann Neurol 74:119–127. https://doi.org/10.1002/ana.23872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Teunissen CE, Lütjohann D, Bergmann KV et al (2003) Combination of serum markers related to several mechanisms in Alzheimer’s disease. Neurobiol Aging 24:893–902. https://doi.org/10.1016/S0197-4580(03)00005-8

    Article  CAS  PubMed  Google Scholar 

  131. Sohmiya M, Tanaka M, Tak NW et al (2004) Redox status of plasma coenzyme Q10 indicates elevated systemic oxidative stress in Parkinson’s disease. J Neurol Sci 223:161–166. https://doi.org/10.1016/j.jns.2004.05.007

    Article  CAS  PubMed  Google Scholar 

  132. de Lau LML, Koudstaal PJ, Albert H, Breteler MMB (2006) Serum cholesterol levels and the risk of Parkinson’s disease. Am J Epidemiol 10. https://doi.org/10.1093/aje/kwj283

  133. Rozani V, Gurevich T, Giladi N et al (2018) Higher serum cholesterol and decreased Parkinson’s disease risk: a statin-free cohort study. Mov Disord. https://doi.org/10.1002/mds.27413

  134. Hu G, Antikainen R, Jousilahti P et al (2008) Total cholesterol and the risk of Parkinson disease. Neurology 70:1972–1979. https://doi.org/10.1212/01.wnl.0000312511.62699.a8

    Article  CAS  PubMed  Google Scholar 

  135. Hu G (2009) Total cholesterol and the risk of Parkinson’s disease: a review for some new findings. Park Dis 2010:836962. https://doi.org/10.4061/2010/836962

    Article  CAS  Google Scholar 

  136. Peter S et al (2002) Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci Lett. https://doi.org/10.1016/S0304-3940(02)00164-7

  137. Lee C-YJ, Seet RCS, Huang SH et al (2009) Different patterns of oxidized lipid products in plasma and urine of dengue fever, stroke, and Parkinson’s disease patients: cautions in the use of biomarkers of oxidative stress. Antioxid Redox Signal 11:407–420. https://doi.org/10.1089/ars.2008.2179

    Article  CAS  PubMed  Google Scholar 

  138. Björkhem I, Lövgren-Sandblom A, Leoni V et al (2013) Oxysterols and Parkinson’s disease: evidence that levels of 24S-hydroxycholesterol in cerebrospinal fluid correlates with the duration of the disease. Neurosci Lett 555:102–105. https://doi.org/10.1016/j.neulet.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  139. Huang X, Chen PC, Poole C (2004) APOE-[epsilon]2 allele associated with higher prevalence of sporadic Parkinson disease. Neurology 62:2198–2202. https://doi.org/10.1212/01.wnl.0000130159.28215.6a

    Article  CAS  PubMed  Google Scholar 

  140. Wakabayashi K, Kakita A, Hayashi S et al (1998) Apolipoprotein E epsilon4 allele and progression of cortical Lewy body pathology in Parkinson’s disease. Acta Neuropathol (Berl) 95:450–454. https://doi.org/10.1007/s004010050824

    Article  CAS  Google Scholar 

  141. Huang X, Chen P, Kaufer DI et al (2006) Apolipoprotein E and dementia in Parkinson disease: a meta-analysis. Arch Neurol 63:189–193. https://doi.org/10.1001/archneur.63.2.189

    Article  PubMed  Google Scholar 

  142. Williams-Gray CH, Goris A, Saiki M et al (2009) Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s disease. J Neurol 256:493–498. https://doi.org/10.1007/s00415-009-0119-8

    Article  CAS  PubMed  Google Scholar 

  143. Gao J, Huang X, Park Y et al (2011) Apolipoprotein E genotypes and the risk of Parkinson disease. Neurobiol Aging 32:2106.e1-2106.e6. https://doi.org/10.1016/j.neurobiolaging.2011.05.016

    Article  CAS  PubMed Central  Google Scholar 

  144. Federoff M, Jimenez-Rolando B, Nalls MA, Singleton AB (2012) A large study reveals no association between APOE and Parkinson’s disease. Neurobiol Dis 46:389–392. https://doi.org/10.1016/j.nbd.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marwarha G, Ghribi O (2015) Does the oxysterol 27-hydroxycholesterol underlie Alzheimer’s disease-Parkinson’s disease overlap? Exp Gerontol 68:13–18. https://doi.org/10.1016/j.exger.2014.09.013

    Article  CAS  PubMed  Google Scholar 

  146. Jeong S-M, Jang W, Shin DW (2019) Association of statin use with Parkinson’s disease: dose-response relationship. Mov Disord Off J Mov Disord Soc 34:1014–1021. https://doi.org/10.1002/mds.27681

    Article  CAS  Google Scholar 

  147. Kimura T, Hasegawa M, Takano O (2002) The effect of dopamine on serum lipid concentration after propofol administration. Masui 51:286–288

    PubMed  Google Scholar 

  148. de Oliveira J, Moreira ELG, Mancini G et al (2013) Diphenyl diselenide prevents cortico-cerebral mitochondrial dysfunction and oxidative stress induced by hypercholesterolemia in LDL receptor knockout mice. Neurochem Res 38:2028–2036. https://doi.org/10.1007/s11064-013-1110-4

    Article  CAS  PubMed  Google Scholar 

  149. Thirumangalakudi L, Prakasam A, Zhang R et al (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106:475–485. https://doi.org/10.1111/j.1471-4159.2008.05415.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Morris JK, Bomhoff GL, Stanford JA, Geiger PC (2010) Neurodegeneration in an animal model of Parkinson’s disease is exacerbated by a high-fat diet. Am J Physiol - Regul Integr Comp Physiol 299:R1082–R1090. https://doi.org/10.1152/ajpregu.00449.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Visanji NP, Lang AE, Kovacs GG (2019) Beyond the synucleinopathies: alpha synuclein as a driving force in neurodegenerative comorbidities. Transl Neurodegener 8:28. https://doi.org/10.1186/s40035-019-0172-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fabelo N, Martín V, Santpere G et al (2011) Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol Med 17:1107–1118. https://doi.org/10.2119/molmed.2011.00119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ida E, Nath S et al (2017) Impact of high cholesterol in a Parkinson’s disease model: prevention of lysosomal leakage versus stimulation of α-synuclein aggregation. Eur J Cell Biol. https://doi.org/10.1016/j.ejcb.2017.01.002

  154. Abbott CA, Mackness MI, Kumar S et al (1995) Serum paraoxonase activity, concentration, and phenotype distribution in diabetes mellitus and its relationship to serum lipids and lipoproteins. Arterioscler Thromb Vasc Biol 15:1812–1818. https://doi.org/10.1161/01.atv.15.11.1812

    Article  CAS  PubMed  Google Scholar 

  155. Prasanthi JR, Huls A, Thomasson S et al (2009) Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol Neurodegener 4:1. https://doi.org/10.1186/1750-1326-4-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Balazs Z, Panzenboeck U, Hammer A et al (2004) Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model. J Neurochem 89:939–950. https://doi.org/10.1111/j.1471-4159.2004.02373.x

    Article  CAS  PubMed  Google Scholar 

  157. Emamzadeh FN, Allsop D (2017) α-Synuclein interacts with lipoproteins in plasma. J Mol Neurosci 63:165. https://doi.org/10.1007/s12031-017-0967-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shahmoradian SH, Genoud C, Graffmeyer A et al (2017) Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci 22:1099–1109. https://doi.org/10.1038/s41593-019-0423-2

    Article  CAS  Google Scholar 

  159. Halliday GM, Ophof A, Broe M et al (2005) Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain J Neurol 128:2654–2664. https://doi.org/10.1093/brain/awh584

    Article  Google Scholar 

  160. Boassa D, Berlanga ML, Yang MA et al (2013) Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis. J Neurosci 33:2605–2615. https://doi.org/10.1523/JNEUROSCI.2898-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Scott D, Roy S (2012) α-Synuclein inhibits intersynaptic vesicle mobility and maintains recycling-pool homeostasis. J Neurosci 32(30):10129–10135. https://doi.org/10.1523/JNEUROSCI.0535-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nakamura K, Mori F, Tanji K et al (2015) Isopentenyl diphosphate isomerase, a cholesterol synthesizing enzyme, is localized in Lewy bodies. Neuropathol Off J Jpn Soc Neuropathol 35:432–440. https://doi.org/10.1111/neup.12204

    Article  CAS  Google Scholar 

  163. Baron P, Crews L, Koob AO et al (2008) Statins reduce neuronal alpha-synuclein aggregation in in vitro models of Parkinson’s disease. J Neurochem 105:1656–1667. https://doi.org/10.1111/j.1471-4159.2008.05254.x

    Article  CAS  Google Scholar 

  164. Krüger R, Vieira-Saecker AM, Kuhn W et al (1999) Increased susceptibility to sporadic Parkinson’s disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann Neurol 45:611–617. https://doi.org/10.1002/1531-8249(199905)45:5<611::aid-ana9>3.0.co;2-x

    Article  PubMed  Google Scholar 

  165. Fantini J, Carlus D, Yahi N (2011) The fusogenic tilted peptide (67-78) of α-synuclein is a cholesterol binding domain. Biochim Biophys Acta 1808:2343–2351. https://doi.org/10.1016/j.bbamem.2011.06.017

    Article  CAS  PubMed  Google Scholar 

  166. Hsiao J-HT, Halliday GM et al (2017) α-Synuclein regulates neuronal cholesterol efflux. Molecules 22(10):1769

    Article  Google Scholar 

  167. Sui Y-T, Bullock KM, Erickson MA et al (2014) Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides 62:197–202. https://doi.org/10.1016/j.peptides.2014.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Barceló-Coblijn G et al (2007) Brain neutral lipids mass is increased in α-synuclein gene-ablated mice. J Neurochem 110(1):132–141. https://doi.org/10.1111/j.1471-4159.2006.04348.x

    Article  CAS  Google Scholar 

  169. van Maarschalkerweerd A, Vetri V, Vestergaard B (2015) Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes. FEBS Lett 589:2661–2667. https://doi.org/10.1016/j.febslet.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  170. Emamzadeh FN, Aojula H, McHugh PC, Allsop D (2016) Effects of different isoforms of apoE on aggregation of the α-synuclein protein implicated in Parkinson’s disease. Neurosci Lett 618:146–151. https://doi.org/10.1016/j.neulet.2016.02.042

    Article  CAS  PubMed  Google Scholar 

  171. Zeppelin T, Ladefoged LK, Sinning S et al (2018) A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput Biol 14(1):e1005907. https://doi.org/10.1371/journal.pcbi.1005907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Orłowski A, Grzybek M, Bunker A et al (2012) Strong preferences of dopamine and l-dopa towards lipid head group: importance of lipid composition and implication for neurotransmitter metabolism. J Neurochem 122:681–690. https://doi.org/10.1111/j.1471-4159.2012.07813.x

    Article  CAS  PubMed  Google Scholar 

  173. Jones KT, Zhen J, Reith MEA (2012) Importance of cholesterol in dopamine transporter function. J Neurochem 123:700–715. https://doi.org/10.1111/jnc.12007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhuge W, Wen F, Ni Z et al (2019) Dopamine burden triggers cholesterol overload following disruption of synaptogenesis in minimal hepatic encephalopathy. Neuroscience 410:1–15. https://doi.org/10.1016/j.neuroscience.2019.04.056

    Article  CAS  PubMed  Google Scholar 

  175. Raju A, Jaisankar P, Borah A, Mohanakumar KP (2017) 1-Methyl-4-phenylpyridinium-induced death of differentiated SH-SY5Y neurons is potentiated by cholesterol. Ann Neurosci 24:243–251. https://doi.org/10.1159/000481551

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kölsch H, Lütjohann D, Tulke A et al (1999) The neurotoxic effect of 24-hydroxycholesterol on SH-SY5Y human neuroblastoma cells. Brain Res 818:171–175. https://doi.org/10.1016/s0006-8993(98)01274-8

    Article  PubMed  Google Scholar 

  177. Yamanaka K, Saito Y, Yamamori T et al (2011) 24(S)-hydroxycholesterol induces neuronal cell death through necroptosis, a form of programmed necrosis. J Biol Chem 286:24666–24673. https://doi.org/10.1074/jbc.M111.236273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yamanaka K, Urano Y, Takabe W et al (2014) Induction of apoptosis and necroptosis by 24(S)-hydroxycholesterol is dependent on activity of acyl-CoA:cholesterol acyltransferase 1. Cell Death Dis 5:e990. https://doi.org/10.1038/cddis.2013.524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cheng D, Kim WS, Garner B (2008) Regulation of alpha-synuclein expression by liver X receptor ligands in vitro. Neuroreport 19:1685–1689. https://doi.org/10.1097/WNR.0b013e32831578b2

    Article  CAS  PubMed  Google Scholar 

  180. Schommer J, Marwarha G, Schommer T et al (2018) 27-Hydroxycholesterol increases α-synuclein protein levels through proteasomal inhibition in human dopaminergic neurons. BMC Neurosci 19(1):17. https://doi.org/10.1186/s12868-018-0420-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Marwarha G, Rhen T, Schommer T, Ghribi O (2008) The oxysterol 27-hydroxycholesterol regulates α-synuclein and tyrosine hydroxylase expression levels in human neuroblastoma cells through modulation of liver X receptors and estrogen receptors-relevance to Parkinson’s disease. J Neurochem 107:1722–1729. https://doi.org/10.1111/j.1471-4159.2008.05736.x

    Article  CAS  PubMed Central  Google Scholar 

  182. Bosco DA, Fowler DM, Zhang Q et al (2006) Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol 2:249–253. https://doi.org/10.1038/nchembio782

    Article  CAS  PubMed  Google Scholar 

  183. Bieschke J, Zhang Q, Bosco DA et al (2006) Small molecule oxidation products trigger disease-associated protein misfolding. Acc Chem Res 39:611–619. https://doi.org/10.1021/ar0500766

    Article  CAS  PubMed  Google Scholar 

  184. Yan J, Sun J, Huang L et al (2014) Simvastatin prevents neuroinflammation by inhibiting N-methyl-D-aspartic acid receptor 1 in 6-hydroxydopamine-treated PC12 cells. J Neurosci Res 92:634–640. https://doi.org/10.1002/jnr.23329

    Article  CAS  PubMed  Google Scholar 

  185. Yan J, Xu Y, Zhu C et al (2011) Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses. PLoS One 6:6. https://doi.org/10.1371/journal.pone.0020945

    Article  CAS  Google Scholar 

  186. Xu Y, Long L, Yan J et al (2012) Simvastatin induces neuroprotection in 6-OHDA-lesioned PC12 via the PI3K/AKT/caspase 3 pathway and anti-inflammatory responses. CNS Neurosci Ther 19:170–177. https://doi.org/10.1111/cns.12053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Selley ML (2005) Simvastatin prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced striatal dopamine depletion and protein tyrosine nitration in mice. Brain Res 1037:1–6. https://doi.org/10.1016/j.brainres.2004.02.083

    Article  CAS  PubMed  Google Scholar 

  188. Kumar A, Sharma N, Gupta A et al (2012) Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms. Brain Res 1471:13–22. https://doi.org/10.1016/j.brainres.2012.06.050

    Article  CAS  PubMed  Google Scholar 

  189. Yan J-Q, Ma Y-J, Sun J-C et al (2014) Neuroprotective effect of lovastatin by inhibiting NMDA receptor1 in 6-hydroxydopamine treated PC12 cells. Int J Clin Exp Med 7:3313–3319

    PubMed  PubMed Central  Google Scholar 

  190. Koob AO, Ubhi K, Paulsson JF et al (2010) Lovastatin ameliorates α-synuclein accumulation and oxidation in transgenic mouse models of α-synucleinopathies. Exp Neurol 221:267–274. https://doi.org/10.1016/j.expneurol.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  191. Lee Y-C, Lin C-H, Wu R-M et al (2013) Discontinuation of statin therapy associates with Parkinson disease: a population-based study. Neurology 81:410–416. https://doi.org/10.1212/WNL.0b013e31829d873c

    Article  CAS  PubMed  Google Scholar 

  192. Huang X, Alonso A, Guo X et al (2015) Statins, plasma cholesterol and risk of Parkinson’s disease: a prospective study. Mov Disord Off J Mov Disord Soc 30:552–559. https://doi.org/10.1002/mds.26152

    Article  CAS  Google Scholar 

  193. Liu G, Sterling NW, Kong L et al (2017) Statins may facilitate Parkinson’s disease: insight gained from a large, national claims database. Mov Disord Off J Mov Disord Soc 32:913–917. https://doi.org/10.1002/mds.27006

    Article  CAS  Google Scholar 

  194. Rozani V, Giladi N, El-Ad B et al (2017) Statin adherence and the risk of Parkinson’s disease: a population-based cohort study. PLoS One 12:e0175054. https://doi.org/10.1371/journal.pone.0175054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Yan J, Qiao L, Tian J et al (2019) Effect of statins on Parkinson’s disease: a systematic review and meta-analysis. Medicine (Baltimore) 98:e14852. https://doi.org/10.1097/MD.0000000000014852

    Article  Google Scholar 

  196. Bai S, Song Y, Huang X et al (2016) Statin use and the risk of Parkinson’s disease: an updated meta-analysis. PLoS One 11:3. https://doi.org/10.1371/journal.pone.0152564

    Article  CAS  Google Scholar 

  197. Sheng Z, Jia X, Kang M (2016) Statin use and risk of Parkinson’s disease: a meta-analysis. Behav Brain Res 309:29–34. https://doi.org/10.1016/j.bbr.2016.04.046

    Article  CAS  PubMed  Google Scholar 

  198. Sierra S, Ramos MC, Molina P et al (2011) Statins as neuroprotectants: a comparative in vitro study of lipophilicity, blood-brain-barrier penetration, lowering of brain cholesterol, and decrease of neuron cell death. J Alzheimers Dis JAD 23:307–318. https://doi.org/10.3233/JAD-2010-101179

    Article  CAS  PubMed  Google Scholar 

  199. van der Most PJ, Dolga AM, Nijholt IM et al (2009) Statins: mechanisms of neuroprotection. Prog Neurobiol 88:64–75. https://doi.org/10.1016/j.pneurobio.2009.02.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81822016 and 81771382) and the Natural Science Foundation of Hubei Province (No. 2018CFA036) to Z. Zhang.

Author information

Authors and Affiliations

Authors

Contributions

LJD conceived and drafted the manuscript. LZ helped to draw the schematics. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Zhentao Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Zou, L., Meng, L. et al. Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic Targets. Mol Neurobiol 58, 2183–2201 (2021). https://doi.org/10.1007/s12035-020-02232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02232-6

Keywords

Navigation