Skip to main content
Log in

Diphenyl Diselenide Prevents Cortico-cerebral Mitochondrial Dysfunction and Oxidative Stress Induced by Hypercholesterolemia in LDL Receptor Knockout Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent studies have indicated a causal link between high dietary cholesterol intake and brain oxidative stress. In particular, we have previously shown a positive correlation between elevated plasma cholesterol levels, cortico-cerebral oxidative stress and mitochondrial dysfunction in low density lipoprotein receptor knockout (LDLr−/−) mice, a mouse model of familial hypercholesterolemia. Here we show that the organoselenium compound diphenyl diselenide (PhSe)2 (1 mg/kg; o.g., once a day for 30 days) significantly blunted the cortico-cerebral oxidative stress and mitochondrial dysfunction induced by a hypercholesterolemic diet in LDLr−/− mice. (PhSe)2 effectively prevented the inhibition of complex I and II activities, significantly increased the reduced glutathione (GSH) content and reduced lipoperoxidation in the cerebral cortex of hypercholesterolemic LDLr−/− mice. Overall, (PhSe)2 may be a promising molecule to protect against hypercholesterolemia-induced effects on the central nervous system, in addition to its already demonstrated antiatherogenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290(5497):1721–1726. doi:10.1126/science.290.5497.1721

    Article  PubMed  CAS  Google Scholar 

  2. Jackson SM, Ericsson J, Edwards PA (1997) Signaling molecules derived from the cholesterol biosynthetic pathway. Subcell Biochem 28:1–21

    Article  PubMed  CAS  Google Scholar 

  3. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232(4746):34–47

    Article  PubMed  CAS  Google Scholar 

  4. Stokes J, Kannel WB, Wolf PA, Cupples LA, D’Agostino RB (1987) The relative importance of selected risk factors for various manifestations of cardiovascular disease among men and women from 35 to 64 years old: 30 years of follow-up in the Framingham study. Circulation 75(6 Pt 2):65–73

    Google Scholar 

  5. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241. doi:10.1038/35025203

    Article  PubMed  CAS  Google Scholar 

  6. Grundy SM, Cleeman JI, Merz CN, Brewer HB Jr, Clark LT, Hunninghake DB, Pasternak RC, Smith SC Jr, Stone NJ, Coordinating Committee of the National Cholesterol Education Program (2004) Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Arterioscler Thromb Vasc Biol 24(8):149–161. doi:10.1161/01.ATV.0000133317.49796.0E

    Article  Google Scholar 

  7. Prospective Studies Collaboration, Lewington S, Whitlock G, Clarke R, Sherliker P, Emberson J, Halsey J, Qizilbash N, Peto R, Collins R (2007) Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370(9602):1829–1839. doi:10.1016/S0140-6736(07)61778-48

    Article  PubMed  Google Scholar 

  8. Sparks DL, Hunsaker JC 3rd, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR (1990) Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging 11(6):601–607

    Article  PubMed  CAS  Google Scholar 

  9. Kuo YM, Emmerling MR, Bisgaier CL, Essenburg AD, Lampert HC, Drumm D, Roher AE (1998) Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain abeta 1–42 levels. Biochem Biophys Res Commun 252(3):711–715. doi:10.1006/bbrc.1998.9652

    Article  PubMed  CAS  Google Scholar 

  10. Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer R (2009) Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord 28(1):75–80. doi:10.1159/000231980

    Article  PubMed  CAS  Google Scholar 

  11. Kivipelto M, Helkala EL, Hänninen T, Laakso MP, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology 56(12):1683–1689

    Article  PubMed  CAS  Google Scholar 

  12. Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, Iivonen S, Mannermaa A, Tuomilehto J, Nissinen A, Soininen H (2002) Apolipoprotein E epsilon4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 137(3):149–155

    Article  PubMed  CAS  Google Scholar 

  13. Kivipelto M, Helkala EL, Laakso MP, Hänninen T, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A (2001) Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ 322(7300):1447–1451

    Article  PubMed  CAS  Google Scholar 

  14. Ramdane S, Daoudi-Gueddah D (2011) Mild hypercholesterolemia, normal plasma triglycerides, and normal glucose levels across dementia staging in Alzheimer’s disease: a clinical setting-based retrospective study. Am J Alzheimers Dis Other Demen 26(5):399–405

    Article  PubMed  Google Scholar 

  15. Crisby M, Rahman SM, Sylvén C, Winblad B, Schultzberg M (2004) Effects of high cholesterol diet on gliosis in apolipoprotein E knockout mice. Implications for Alzheimer’s disease and stroke. Neurosci Lett 369(2):87–92. doi:10.1016/j.neulet.2004.05.057

    Article  PubMed  CAS  Google Scholar 

  16. Montilla P, Espejo I, Muñoz MC, Bujalance I, Muñoz-Castañeda JR, Tunez I (2006) Protective effect of red wine on oxidative stress and antioxidant enzyme activities in the brain and kidney induced by feeding high cholesterol in rats. Clin Nutr 25(1):146–153. doi:10.1016/j.clnu.2005.10.004

    Article  PubMed  CAS  Google Scholar 

  17. Amin K, Kamel HH, Abd Eltawab M (2011) The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid. Lipids Health Dis 10:74. doi:10.1186/1476-511X-10-74

    Article  PubMed  CAS  Google Scholar 

  18. Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci USA 100(19):11065–11069. doi:10.1073/pnas.1832769100

    Article  PubMed  CAS  Google Scholar 

  19. Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106(1):475–485. doi:10.1111/j.1471-4159.2008.05415.x

    Article  PubMed  CAS  Google Scholar 

  20. Lu J, Wu DM, Zheng YL, Sun DX, Hu B, Shan Q, Zhang ZF, Fan SH (2009) Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway. Brain Behav Immun 23(2):193–203. doi:10.1016/j.bbi.2008.09.003

    Article  PubMed  CAS  Google Scholar 

  21. Lu J, Wu DM, Zheng YL, Hu B, Zhang ZF, Shan Q, Zheng ZH, Liu CM, Wang YJ (2010) Quercetin activates AMP-activated protein kinase by reducing PP2C expression protecting old mouse brain against high cholesterol-induced neurotoxicity. J Pathol 222(2):199–212. doi:10.1002/path.2754

    Article  PubMed  CAS  Google Scholar 

  22. Kowaltowski AJ, De Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47(4):333–343. doi:10.1016/j.freeradbiomed.2009.05.004

    Article  PubMed  CAS  Google Scholar 

  23. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287(4):817–833. doi:10.1152/ajpcell.00139.2004

    Article  Google Scholar 

  24. de Oliveira J, Hort MA, Moreira EL, Glaser V, Ribeiro-do-Valle RM, Prediger RD, Farina M, Latini A, de Bem AF (2011) Positive correlation between elevated plasma cholesterol levels and cognitive impairments in LDL receptor knockout mice: relevance of cortico-cerebral mitochondrial dysfunction and oxidative stress. Neuroscience 197:99–106. doi:10.1016/j.neuroscience.2011.09.009

    Article  PubMed  Google Scholar 

  25. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27(8):1706–1721. doi:10.1161/ATVBAHA.107.142570

    Article  PubMed  CAS  Google Scholar 

  26. Simons M, Schwärzler F, Lütjohann D, von Bergmann K, Beyreuther K, Dichgans J, Wormstall H, Hartmann T, Schulz JB (2002) Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol 52(3):346–350. doi:10.1002/ana.10292

    Article  PubMed  CAS  Google Scholar 

  27. Sparks DL, Sabbagh MN, Connor DJ, Lopez J, Launer LJ, Browne P, Wasser D, Johnson-Traver S, Lochhead J, Ziolwolski C (2005) Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 62(5):753–757. doi:10.1001/archneur.62.5.753

    Article  PubMed  Google Scholar 

  28. Sparks DL, Connor DJ, Sabbagh MN, Petersen RB, Lopez J, Browne P (2006) Circulating cholesterol levels, apolipoprotein E genotype and dementia severity influence the benefit of atorvastatin treatment in Alzheimer’s disease: results of the Alzheimer’s disease cholesterol-lowering treatment (ADCLT) trial. Acta Neurol Scand Suppl 185:3–7

    Article  PubMed  CAS  Google Scholar 

  29. Ghisleni G, Porciúncula LO, Cimarosti H, Batista T, Rocha J, Salbego CG, Souza DO (2003) Diphenyl diselenide protects rat hippocampal slices submitted to oxygen-glucose deprivation and diminishes inducible nitric oxide synthase immunocontent. Brain Res 986(1–2):196–199. doi:10.1016/S0006-8993(03)03193-7

    Article  PubMed  CAS  Google Scholar 

  30. Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255–6285. doi:10.1021/cr0406559

    Article  PubMed  CAS  Google Scholar 

  31. Savegnago L, Trevisan M, Alves D, Rocha JB, Nogueira CW, Zeni G (2006) Antisecretory and antiulcer effects of diphenyl diselenide. Environ Toxicol Pharmacol 21(1):86–92. doi:10.1016/j.etap.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  32. Ineu RP, Pereira ME, Aschner M, Nogueira CW, Zeni G, Rocha JB (2008) Diphenyl diselenide reverses gastric lesions in rats: involvement of oxidative stress. Food Chem Toxicol 46(9):3023–3029. doi:10.1016/j.fct.2008.06.007

    Article  PubMed  CAS  Google Scholar 

  33. Wilhelm E, Jesse CR, Leite MR, Nogueira CW (2009) Studies on preventive effects of diphenyl diselenide on acetaminophen-induced hepatotoxicity in rats. Pathophysiology 16(1):31–37. doi:10.1016/j.pathophys.2008.12.002

    Article  PubMed  CAS  Google Scholar 

  34. Nogueira CW, Quinhones EB, Jung EA, Zeni G, Rocha JB (2003) Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm Res 52(2):56–63. doi:10.1007/s000110300001

    Article  PubMed  CAS  Google Scholar 

  35. Savegnago L, Jesse CR, Pinto LG, Rocha JB, Nogueira CW (2007) Diphenyl diselenide attenuates acute thermal hyperalgesia and persistent inflammatory and neuropathic pain behavior in mice. Brain Res 1175:54–59. doi:10.1016/j.brainres.2007.07.086

    Article  PubMed  CAS  Google Scholar 

  36. da Silva MH, da Rosa EJ, de Carvalho NR, Dobrachinski F, da Rocha JB, Mauriz JL, González-Gallego J, Soares FA (2012) Acute brain damage induced by acetaminophen in mice: effect of diphenyl diselenide on oxidative stress and mitochondrial dysfunction. Neurotox Res 21(3):334–344. doi:10.1007/s12640-011-9288-1

    Article  PubMed  CAS  Google Scholar 

  37. Hort MA, Straliotto MR, Netto PM, da Rocha JB, de Bem AF, Ribeiro-do-Valle RM (2011) Diphenyl diselenide effectively reduces atherosclerotic lesions in LDLr −/− mice by attenuation of oxidative stress and inflammation. J Cardiovasc Pharmacol 58(1):91–101. doi:10.1097/FJC.0b013e31821d1149

    Article  PubMed  CAS  Google Scholar 

  38. de Bem AF, Portella Rde L, Colpo E, Duarte MM, Frediane A, Taube PS, Nogueira CW, Farina M, da Silva EL, Teixeira Rocha JB (2009) Diphenyl diselenide decreases serum levels of total cholesterol and tissue oxidative stress in cholesterol-fed rabbits. Basic Clin Pharmacol Toxicol 105(1):17–23. doi:10.1111/j.1742-7843.2009.00414.x

    Article  PubMed  Google Scholar 

  39. Paulmier C (1986) Seleno organic functional groups. Pergamon, Oxford

    Google Scholar 

  40. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92(2):883–893. doi:10.1172/JCI116663

    Article  PubMed  CAS  Google Scholar 

  41. Sanchez-Muniz FJ, Bastida S (2008) Do not use the Friedewald formula to calculate LDL-cholesterol in hypercholesterolaemic rats. Eur J Lipid Sci Technol 110:295–301

    Article  CAS  Google Scholar 

  42. Latini A, da Silva CG, Ferreira GC, Schuck PF, Scussiato K, Sarkis JJ, Dutra Filho CS, Wyse AT, Wannmacher CM, Wajner M (2005) Mitochondrial energy metabolism is markedly impaired by D-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86(1–2):188–199. doi:10.1016/j.ymgme.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  43. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328(2):309–316. doi:10.1006/abbi.1996.0178

    Article  PubMed  CAS  Google Scholar 

  44. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153(1):23–36. doi:10.1016/0009-8981(85)90135-4

    Article  PubMed  CAS  Google Scholar 

  45. Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228(1):35–51. doi:10.1016/0009-8981(94)90055-8

    Article  PubMed  CAS  Google Scholar 

  46. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77. doi:10.1016/0003-9861(59)90090-6

    Article  PubMed  CAS  Google Scholar 

  47. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333. doi:10.1016/S0076-6879(81)77046-0

    Article  PubMed  CAS  Google Scholar 

  48. Carlberg I, Mannervik B (1975) Purification glutathione and characterization of the flavoenzyme reductase from rat liver. J Biol Chem 250(14):5475–5480

    PubMed  CAS  Google Scholar 

  49. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. doi:10.1016/0003-2697(79)90738-3

    Article  PubMed  CAS  Google Scholar 

  50. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  51. Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci 1147:283–292. doi:10.1196/annals.1427.030

    Article  PubMed  CAS  Google Scholar 

  52. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518. doi:10.1038/nrn2417

    Article  PubMed  CAS  Google Scholar 

  53. Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr (2000) Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 162(1):37–50. doi:10.1006/exnr.2000.7333

    Article  PubMed  CAS  Google Scholar 

  54. Baloyannis SJ, Costa V, Michmizos D (2004) Mitochondrial alterations Alzheimer’s disease. Am J Alzheimers Dis Other Demen 19(2):89–93. doi:10.1177/153331750401900205

    Article  PubMed  Google Scholar 

  55. Blass JP, Sheu RK, Gibson GE (2000) Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann N Y Acad Sci 903:204–221. doi:10.1111/j.1749-6632.2000.tb06370.x

    Article  PubMed  CAS  Google Scholar 

  56. Blass JP (2006) The mitochondrial spiral: an adequate cause of dementia in the Alzheimer’s syndrome. Ann N Y Acad Sci 924:170–183. doi:10.1111/j.1749-6632.2000.tb05576.x

    Article  Google Scholar 

  57. Beal MF (2005) Oxidative damage as an early marker of Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 26(5):585–586. doi:10.1016/j.neurobiolaging.2004.09.022

    Article  PubMed  CAS  Google Scholar 

  58. Atamna H, Frey WH 2nd (2007) Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7(5):297–310. doi:10.1016/j.mito.2007.06.001

    Article  PubMed  CAS  Google Scholar 

  59. Pappolla MA, Bryant-Thomas TK, Herbert D, Pacheco J, Fabra Garcia M, Manjon M, Girones X, Henry TL, Matsubara E, Zambon D, Wolozin B, Sano M, Cruz-Sanchez FF, Thal LJ, Petanceska SS, Refolo LM (2003) Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology 61(2):199–205

    Article  PubMed  CAS  Google Scholar 

  60. Aytan N, Jung T, Tamtürk F, Grune T, Kartal-Ozer N (2008) Oxidative stress related changes in the brain of hypercholesterolemic rabbits. BioFactors 33(3):225–236

    Article  PubMed  CAS  Google Scholar 

  61. Ramírez C, Sierra S, Tercero I, Vázquez JA, Pineda A, Manrique T, Burgos JS (2011) ApoB100/LDLR-/- hypercholesterolaemic mice as a model for mild cognitive impairment and neuronal damage. PLoS One 6(7):e22712. doi:10.1371/journal.pone.0022712

    Article  PubMed  Google Scholar 

  62. Moreira EL, de Oliveira J, Nunes JC, Santos DB, Nunes FC, Vieira DS, Ribeiro-do-Valle RM, Pamplona FA, de Bem AF, Farina M, Walz R, Prediger RD (2012) Age-related cognitive decline in hypercholesterolemic LDL receptor knockout mice (LDLr−/−): evidence of antioxidant imbalance and increased acetylcholinesterase activity in the prefrontal cortex. J Alzheimers Dis 32(2):495–511. doi:10.3233/JAD-2012-120541

    PubMed  CAS  Google Scholar 

  63. McCommis KS, McGee AM, Laughlin MH, Bowles DK, Baines CP (2011) Hypercholesterolemia increases mitochondrial oxidative stress and enhances the MPT response in the porcine myocardium: beneficial effects of chronic exercise. Am J Physiol Regul Integr Comp Physiol 301(5):1250–1258. doi:10.1152/ajpregu.00841.2010

    Article  Google Scholar 

  64. Rosa RM, Roesler R, Braga AL, Saffi J, Henriques JA (2007) Pharmacology and toxicology of diphenyl diselenide in several biological models. Braz J Med Biol Res 40(10):1287–1304

    Article  PubMed  CAS  Google Scholar 

  65. Prigol M, Wilhelm EA, Nogueira CW, Zeni G (2010) Diphenyl diselenide-induced seizures in rat pups: possible interaction with GABAergic system. Neurol Res 32(9):1002–1008. doi:10.1179/016164110X12670144737738

    Article  PubMed  CAS  Google Scholar 

  66. Griffith OW, Mulcahy RT (1999) The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol 73:209–267

    Article  PubMed  CAS  Google Scholar 

  67. Straliotto MR, Mancini G, de Oliveira J, Nazari EM, Müller YM, Dafre A, Ortiz S, Silva EL, Farina M, Latini A, Rocha JB, de Bem AF (2010) Acute exposure of rabbits to diphenyl diselenide: a toxicological evaluation. J Appl Toxicol 30(8):761–768. doi:10.1002/jat.1560

    Article  PubMed  CAS  Google Scholar 

  68. Borges LP, Nogueira CW, Panatieri RB, Rocha JB, Zeni G (2006) Acute liver damage induced by 2-nitropropane in rats: effect of diphenyl diselenide on antioxidant defenses. Chem Biol Interact 160(2):99–107. doi:10.1016/j.cbi.2005.12.010

    Article  PubMed  CAS  Google Scholar 

  69. de Freitas AS, Rocha JB (2011) Diphenyl diselenide and analogs are substrates of cerebral rat thioredoxin reductase: a pathway for their neuroprotective effects. Neurosci Lett 503(1):1–5. doi:10.1016/j.neulet.2011.07.050

    Article  PubMed  Google Scholar 

  70. Brigelius-Flohé R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27(9–10):951–965. doi:10.1016/S0891-5849(99)00173-2

    Article  PubMed  Google Scholar 

  71. De Haan JB, Crack PJ, Flentjar N, Iannello RC, Hertzog PJ, Kola I (2003) An imbalance in antioxidant defense affects cellular function: the pathophysiological consequences of a reduction in antioxidant defense in the glutathione peroxidase-1 (Gpx1) knockout mouse. Redox Rep 8(2):69–79. doi:10.1179/135100003125001378

    Article  PubMed  Google Scholar 

  72. Ran Q, Gu M, Van Remmen H, Strong R, Roberts JL, Richardson A (2006) Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. J Neurosci Res 84(1):202–208. doi:10.1002/jnr.20868

    Article  PubMed  CAS  Google Scholar 

  73. Posser T, Franco JL, dos Santos DA, Rigon AP, Farina M, Dafré AL, Teixeira Rocha JB, Leal RB (2008) Diphenyl diselenide confers neuroprotection against hydrogen peroxide toxicity in hippocampal slices. Brain Res 1199:138–147. doi:10.1016/j.brainres.2008.01.004

    Article  PubMed  CAS  Google Scholar 

  74. de Bem AF, Farina M, Portella Rde L, Nogueira CW, Dinis TC, Laranjinha JA, Almeida LM, Rocha JB (2008) Diphenyl diselenide, a simple glutathione peroxidase mimetic, inhibits human LDL oxidation in vitro. Atherosclerosis 201(1):92–100. doi:10.1016/j.atherosclerosis.2008.02.030

    Article  PubMed  Google Scholar 

  75. Barbosa NB, Rocha JB, Wondracek DC, Perottoni J, Zeni G, Nogueira CW (2006) Diphenyl diselenide reduces temporarily hyperglycemia: possible relationship with oxidative stress. Chem Biol Interact 163(3):230–238. doi:10.1016/j.cbi.2006.08.004

    Article  PubMed  CAS  Google Scholar 

  76. Nogueira CW, Rocha JB (2011) Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 85(11):1313–1359. doi:10.1007/s00204-011-0720-3

    Article  PubMed  CAS  Google Scholar 

  77. Bem AF, Fiuza B, Calcerrada P, Brito PM, Peluffo G, Dinis TC, Trujillo M, Rocha JB, Radi R, Almeida LM (2013) Protective effect of diphenyl diselenide against peroxynitrite-mediated endothelial cell death: a comparison with ebselen. Nitric Oxide 31:20–30. doi:10.1016/j.niox.2013.03.003

    Article  PubMed  Google Scholar 

  78. Fernández A, Llacuna L, Fernández-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29(20):6394–6405. doi:10.1523/JNEUROSCI.4909-08.2009

    Article  PubMed  Google Scholar 

  79. Marí M, Colell A, Morales A, Caballero F, Moles A, Fernández A, Terrones O, Basañez G, Antonsson B, García-Ruiz C, Fernández-Checa JC (2008) Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation. Gastroenterology 134(5):1507–1520. doi:10.1053/j.gastro.2008.01.073

    Article  PubMed  Google Scholar 

  80. Oliveira HC, Cosso RG, Alberici LC, Maciel EN, Salerno AG, Dorighello GG, Velho JA, de Faria EC, Vercesi AE (2005) Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria. FASEB J 19(2):278–280. doi:10.1096/fj.04-2095fje

    PubMed  CAS  Google Scholar 

  81. Paim BA, Velho JA, Castilho RF, Oliveira HC, Vercesi AE (2008) Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Free Radic Biol Med 44(3):444–451. doi:10.1016/j.freeradbiomed.2007.10.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Brazilian institutions Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Fundação de Apoio à Pesquisa do Estado de Santa Catarina (FAPESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreza Fabro de Bem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira, J., Moreira, E.L.G., Mancini, G. et al. Diphenyl Diselenide Prevents Cortico-cerebral Mitochondrial Dysfunction and Oxidative Stress Induced by Hypercholesterolemia in LDL Receptor Knockout Mice. Neurochem Res 38, 2028–2036 (2013). https://doi.org/10.1007/s11064-013-1110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1110-4

Keywords

Navigation