Skip to main content

Advertisement

Log in

EphA1 Activation Induces Neuropathological Changes in a Mouse Model of Parkinson’s Disease Through the CXCL12/CXCR4 Signaling Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is increasing evidence that EphA1 is involved in the function and development of the central nervous system, especially in neuroinflammation. It has been found to affect the disease progression of Alzheimer’s disease (AD) by regulating the neuroinflammatory process. Neuroinflammation has always been regarded as the mechanism of the development of Parkinson’s disease (PD) and possible therapeutic targets. Therefore, it is worth studying whether EphA1 has a potential therapeutic value for PD. The purpose of this study is to investigate the effect of EphA1 in mice and PD cell models and its mechanism.

In this study, we verified the difference in expression of EphA1 and the effect and mechanism of EphA1 on neuropathological changes through Parkinson’s patient samples, Parkinson’s mice model, and Parkinson’s model prepared from SH-SY5Y cells in vitro.

EphA1 was highly expressed in the substantia nigra (SN) region of Parkinson mice and the Parkinson cell model, while the expression of tyrosine hydroxylase (TH) in the SN region of Parkinson mice was significantly reduced. After silenced EphA1 in the SH-SY5Y cell PD model, the expression levels of α-synuclein, inflammatory factors, and microglia-activated chemokine decreased. The co-immunoprecipitation experiment proved that EphA1 overexpression could promote the binding of CXCL12 and CXCR4. However, after silenced EphA1 and CXCL12 at the same time, the above effects brought by silenced EphA1 were suppressed. The same result appeared in mice with PD.

EphA1 improves the inflammatory responses and neuropathological changes of the PD model in vivo and in vitro through the CXCL12/CXCR4 signaling pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Collaborators GPsD (2018) Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17(11):939–953

    Article  Google Scholar 

  2. Michel PP, Hirsch EC, Hunot S (2016) Understanding dopaminergic cell death pathways in Parkinson disease. Neuron 90(4):675–691

    Article  CAS  PubMed  Google Scholar 

  3. Shen Y, Olbrich E, Achermann P, Meier P (2003) Dimensional complexity and spectral properties of the human sleep EEG. Clin Neurophysiol 114(2):199–209

    Article  CAS  PubMed  Google Scholar 

  4. Blaylock RL (2017) Parkinson’s disease: microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 8:65

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leverenz JB, Quinn JF, Zabetian C, Zhang J, Montine KS, Montine TJ (2009) Cognitive impairment and dementia in patients with Parkinson disease. Curr Top Med Chem 9(10):903–912

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Davis MY, Johnson CO, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, Quinn JF et al (2016) Association of GBA mutations and the E326K polymorphism with motor and cognitive progression in Parkinson disease. JAMA neurology 73(10):1217–1224

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AMG (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8(10):766–775

    Article  CAS  PubMed  Google Scholar 

  9. Greenamyre JT, Sanders LH, Gasser T (2015) Fruit flies, bile acids, and Parkinson disease: a mitochondrial connection? Neurology 85(10):838–839

    Article  PubMed  Google Scholar 

  10. Amor S, Puentes F, Baker D, Van Der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353(6301):777–783

    Article  CAS  PubMed  Google Scholar 

  12. Cheng H-J, Flanagan JG (1994) Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79(1):157–168

    Article  CAS  PubMed  Google Scholar 

  13. Ciossek T, Millauer B, Ullrich A (1995) Identification of alternatively spliced mRNAs encoding variants of MDK1, a novel receptor tyrosine kinase expressed in the murine nervous system. Oncogene 10(1):97–108

    CAS  PubMed  Google Scholar 

  14. Wang J, Dong Y, Wang X, Ma H, Sheng Z, Li G, Lu G, Sugimura H et al (2010) Expression of EphA1 in gastric carcinomas is associated with metastasis and survival. Oncol Rep 24(6):1577–1584

    CAS  PubMed  Google Scholar 

  15. Fox BP, Tabone CJ, Kandpal RP (2006) Potential clinical relevance of Eph receptors and ephrin ligands expressed in prostate carcinoma cell lines. Biochem Biophys Res Commun 342(4):1263–1272

    Article  CAS  PubMed  Google Scholar 

  16. Iida H, Honda M, Kawai H, Yamashita T, Shirota Y, Wang B, Miao H, Kaneko S (2005) Ephrin-A1 expression contributes to the malignant characteristics of α-fetoprotein producing hepatocellular carcinoma. Gut 54(6):843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Ma J, Dong Y, Shen Z, Ma H, Wang X, Shi S, Wu J et al (2013) High expression of EphA1 in esophageal squamous cell carcinoma is associated with lymph node metastasis and advanced disease. Apmis 121(1):30–37

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Yu H, Shan Y, Tao C, Wu F, Yu Z, Guo P, Huang J et al (2016) EphA1 activation promotes the homing of endothelial progenitor cells to hepatocellular carcinoma for tumor neovascularization through the SDF-1/CXCR4 signaling pathway. J Exp Clin Cancer Res 35:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Villegas-Llerena C, Phillips A, Garcia-Reitboeck P, Hardy J, Pocock JM (2016) Microglial genes regulating neuroinflammation in the progression of Alzheimer’s disease. Curr Opin Neurobiol 36:74–81

    Article  CAS  PubMed  Google Scholar 

  22. Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, Desplats P, Masliah E et al (2012) Antibody-aided clearance of extracellular α-synuclein prevents cell-to-cell aggregate transmission. J Neurosci 32(39):13454–13469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Luk KC, Tansey MG, Paumier KL, Kanaan NM et al (2018) Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation 15(1):129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Doorn KJ, Moors T, Drukarch B, van de Berg WD, Lucassen PJ, van Dam A-M (2014) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun 2(1):90

    PubMed  PubMed Central  Google Scholar 

  25. Harms AS, Delic V, Thome AD, Bryant N, Liu Z, Chandra S, Jurkuvenaite A, West AB (2017) α-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration. Acta Neuropathol Commun 5(1):85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Knott C, Stern G, Wilkin G (2000) Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. Mol Cell Neurosci 16(6):724–739

    Article  CAS  PubMed  Google Scholar 

  27. Pavlasova G, Borsky M, Seda V, Cerna K, Osickova J, Doubek M, Mayer J, Calogero R et al (2016) Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis, Blood. J Am Soc Hematol 128(12):1609–1613

    CAS  Google Scholar 

  28. Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, Schulz E, Machiela E et al (2016) Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci Transl Med 8(368):368ra174

    Article  PubMed  CAS  Google Scholar 

  29. Xicoy H, Wieringa B, Martens GJ (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 12(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zheng JJ, Li SJ, Zhang XD, Miao WY, Zhang D, Yao H, Yu X (2014) Oxytocin mediates early experience–dependent cross-modal plasticity in the sensory cortices. Nat Neurosci 17(3):391–399

    Article  CAS  PubMed  Google Scholar 

  31. Chen G, Wang Y, Zhou M, Shi H, Yu Z, Zhu Y, Yu F (2010) EphA1 receptor silencing by small interfering RNA has antiangiogenic and antitumor efficacy in hepatocellular carcinoma. Oncol Rep 23(2):563–570

    CAS  PubMed  Google Scholar 

  32. Martinez A, Otal R, Sieber B-A, Ibanez C, Soriano E (2005) Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience 135(2):451–461

    Article  CAS  PubMed  Google Scholar 

  33. Lai K-O, Ip NY (2009) Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol 19(3):275–283

    Article  CAS  PubMed  Google Scholar 

  34. Karch CM, Goate AM (2015) Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1):43–51

    Article  CAS  PubMed  Google Scholar 

  35. Lin CH, Chen CC, Chiang HL, Liou JM, Chang CM, Lu TP, Chuang EY, Tai YC et al (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 16(1):129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Brodacki B, Staszewski J, Toczyłowska B, Kozłowska E, Drela N, Chalimoniuk M, Stepien A (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441(2):158–162

    Article  CAS  PubMed  Google Scholar 

  37. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol (Baltimore, Md: 1950) 183(2):787–791

    Article  CAS  Google Scholar 

  38. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21(7):677–687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Panicker N, Sarkar S, Harischandra DS, Neal M, Kam TI, Jin H, Saminathan H, Langley M et al (2019) Fyn kinase regulates misfolded α-synuclein uptake and NLRP3 inflammasome activation in microglia. J Exp Med 216(6):1411–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Nguyen LT, Burlak C, Chegini F, Guo F, Chataway T, Ju S, Fisher OS et al (2016) Caspase-1 causes truncation and aggregation of the Parkinson’s disease-associated protein α-synuclein. Proc Natl Acad Sci U S A 113(34):9587–9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Montecucco F, Lenglet S, Gayet-Ageron A, Bertolotto M, Pelli G, Palombo D, Pane B, Spinella G et al (2010) Systemic and intraplaque mediators of inflammation are increased in patients symptomatic for ischemic stroke. Stroke 41(7):1394–1404

    Article  PubMed  Google Scholar 

  42. Shi W, Huang C, Xu X, Jin G, Huang R, Huang J, Chen Y, Ju S et al (2016) Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomater 45:247–261

    Article  CAS  PubMed  Google Scholar 

  43. Trojan E, Ślusarczyk J, Chamera K, Kotarska K, Głombik K, Kubera M, Basta-Kaim A (2017) The modulatory properties of chronic antidepressant drugs treatment on the brain chemokine–chemokine receptor network: a molecular study in an animal model of depression. Front Pharmacol 8:779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yu Y, Huang X, Di Y, Qu L, Fan N (2017) Effect of CXCL12/CXCR4 signaling on neuropathic pain after chronic compression of dorsal root ganglion. Sci Rep 7(1):5707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Henan Province Science and Technology Development Plan (Grant No.: 192102310085) and Henan Province Medical Science and Technology Research Program (Grant No.: 201701018).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jianjun Ma; Methodology: Jianjun Ma, Zhidong Wang, and Siyuan Chen; Formal analysis and investigation: Jianjun Ma, Zhidong Wang, Wenhua Sun, Qi Gu, Dongsheng Li, Jinhua Zheng, Hongqi Yang, and Xue Li; Data visualization: Qi Gu, Dongsheng Li, and Jinhua Zheng; Literature search: Hongqi Yang and Xue Li; Writing of original draft preparation: Jianjun Ma and Zhidong Wang; Writing-review and editing: Jianjun Ma and Siyuan Chen; Funding acquisition: Jianjun Ma; Supervision: Jianjun Ma.

Corresponding author

Correspondence to Jianjun Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The experimental operation process is approved and supervised by the Ethics Committee of Henan Provincial People’s Hospital and Animal Protection and Use Agency Committee of Henan Provincial People’s Hospital.

Consent to Participate

All patients provided written informed consent.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. EphA1 is highly expressed in Parkinson’s disease (PD) model and patients.

2. The effect of EphA1 and CXCL12 was studied on PD model in vitro and in vivo.

3. EphA1 overexpression promotes neuroinflammation and damage to dopaminergic neurons.

4. EphA1 activation induces neuropathological changes through the CXCL12/CXCR4 axis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Wang, Z., Chen, S. et al. EphA1 Activation Induces Neuropathological Changes in a Mouse Model of Parkinson’s Disease Through the CXCL12/CXCR4 Signaling Pathway. Mol Neurobiol 58, 913–925 (2021). https://doi.org/10.1007/s12035-020-02122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02122-x

Keywords

Navigation