Skip to main content

Advertisement

Log in

Tau Pathology Triggered by Spinal Cord Injury Can Play a Critical Role in the Neurotrauma Development

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Traumatic spinal cord injury (SCI) can result in substantial neurological impairment along with significant emotional and psychological distress. It is clear that there is profound neurodegeneration upon SCI, gradually spread to other spinal cord regions and brain areas. Despite extensive considerations, it remains uncertain how pathogenicity diffuses in the cord. It has been reported that tau protein abnormal hyperphosphorylation plays a central role in neurodegeneration triggered by traumatic brain injury (TBI). Tau is a microtubule-associated protein, heavily implicated in neurodegenerative diseases. Importantly, tau pathology spreads in a traumatic brain in a timely manner. In particular, we have recently demonstrated that phosphorylated tau at Thr231 exists in two distinct cis and trans conformations, in which that cis P-tau is extremely neurotoxic, has a prion nature, and spreads to various brain areas and cerebrospinal fluid (CSF) upon trauma. On the other hand, tau pathology, in particular hyperphosphorylation at Thr231, has been observed upon SCI. Taken these together, we conclude that cis pT231-tau may accumulate and spread in the spinal cord as well as CSF and diffuse tau pathology in the central nervous system (CNS). Moreover, antibody against cis P-tau can target intracellular cis P-tau and protect pathology spreading. Thus, considering cis P-tau as a driver of tau pathology and neurodegeneration upon SCI would open new windows toward understanding the disease development and early biomarkers. Furthermore, it would help us develop effective therapies for SCI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krueger H, Noonan VK, Trenaman LM, Joshi P, Rivers CS (2013) The economic burden of traumatic spinal cord injury in Canada. Chronic Dis Inj Can 33(3):113–122

    CAS  PubMed  Google Scholar 

  2. Noonan VK, Fingas M, Farry A, Baxter D, Singh A, Fehlings MG, Dvorak MF (2012) Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology 38(4):219–226. https://doi.org/10.1159/000336014

    Article  PubMed  Google Scholar 

  3. Priebe MM, Chiodo AE, Scelza WM, Kirshblum SC, Wuermser LA, Ho CH (2007) Spinal cord injury medicine. 6. Economic and societal issues in spinal cord injury. Arch Phys Med Rehabil 88(3 Suppl 1):S84–S88. https://doi.org/10.1016/j.apmr.2006.12.005

    Article  PubMed  Google Scholar 

  4. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309–331. https://doi.org/10.2147/CLEP.S68889

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L (1998) Acute inflammatory response in spinal cord following impact injury. Exp Neurol 151(1):77–88. https://doi.org/10.1006/exnr.1998.6785

    Article  CAS  PubMed  Google Scholar 

  6. Trivedi A, Olivas AD, Noble-Haeusslein LJ (2006) Inflammation and spinal cord injury: infiltrating leukocytes as determinants of injury and repair processes. Clin Neurosci Res 6(5):283–292. https://doi.org/10.1016/j.cnr.2006.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Biglari B, Swing T, Child C, Buchler A, Westhauser F, Bruckner T, Ferbert T, Jurgen Gerner H et al (2015) A pilot study on temporal changes in IL-1beta and TNF-alpha serum levels after spinal cord injury: the serum level of TNF-alpha in acute SCI patients as a possible marker for neurological remission. Spinal Cord 53(7):510–514. https://doi.org/10.1038/sc.2015.28

    Article  CAS  PubMed  Google Scholar 

  8. Janssen O, Qian J, Linkermann A, Kabelitz D (2003) CD95 ligand--death factor and costimulatory molecule? Cell Death Differ 10(11):1215–1225. https://doi.org/10.1038/sj.cdd.4401305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10(12):580–583. https://doi.org/10.1016/j.molmed.2004.10.006

    Article  CAS  PubMed  Google Scholar 

  10. Davies SJ, Field PM, Raisman G (1996) Regeneration of cut adult axons fails even in the presence of continuous aligned glial pathways. Exp Neurol 142(2):203–216. https://doi.org/10.1006/exnr.1996.0192

    Article  CAS  PubMed  Google Scholar 

  11. Schmitt AB, Buss A, Breuer S, Brook GA, Pech K, Martin D, Schoenen J, Noth J et al (2000) Major histocompatibility complex class II expression by activated microglia caudal to lesions of descending tracts in the human spinal cord is not associated with a T cell response. Acta Neuropathol 100(5):528–536. https://doi.org/10.1007/s004010000221

    Article  CAS  PubMed  Google Scholar 

  12. Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294(1):1–9. https://doi.org/10.1007/s004410051151

    Article  CAS  PubMed  Google Scholar 

  13. Bethea JR, Dietrich WD (2002) Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol 15(3):355–360

    PubMed  Google Scholar 

  14. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  15. Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75(1):15–26. https://doi.org/10.3171/jns.1991.75.1.0015

    Article  CAS  PubMed  Google Scholar 

  16. Nardone R, Holler Y, Brigo F, Seidl M, Christova M, Bergmann J, Golaszewski S, Trinka E (2013) Functional brain reorganization after spinal cord injury: systematic review of animal and human studies. Brain Res 1504:58–73. https://doi.org/10.1016/j.brainres.2012.12.034

    Article  CAS  PubMed  Google Scholar 

  17. Cavdar S, Onat FY, Cakmak YO, Yananli HR, Gulcebi M, Aker R (2008) The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J Anat 212(3):249–256. https://doi.org/10.1111/j.1469-7580.2008.00858.x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hulsebosch CE, Hains BC, Crown ED, Carlton SM (2009) Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev 60(1):202–213. https://doi.org/10.1016/j.brainresrev.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  19. Zhao P, Waxman SG, Hains BC (2007) Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J Neurosci 27(33):8893–8902. https://doi.org/10.1523/JNEUROSCI.2209-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hains BC, Saab CY, Waxman SG (2005) Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain 128(Pt 10):2359–2371. https://doi.org/10.1093/brain/awh623

    Article  PubMed  Google Scholar 

  21. Hubscher CH, Johnson RD (2006) Chronic spinal cord injury induced changes in the responses of thalamic neurons. Exp Neurol 197(1):177–188. https://doi.org/10.1016/j.expneurol.2005.09.007

    Article  PubMed  Google Scholar 

  22. Knerlich-Lukoschus F, Noack M, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J (2011) Spinal cord injuries induce changes in CB1 cannabinoid receptor and C-C chemokine expression in brain areas underlying circuitry of chronic pain conditions. J Neurotrauma 28(4):619–634. https://doi.org/10.1089/neu.2010.1652

    Article  PubMed  Google Scholar 

  23. Yoon EJ, Kim YK, Shin HI, Lee Y, Kim SE (2013) Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res 1540:64–73. https://doi.org/10.1016/j.brainres.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  24. Wu J, Raver C, Piao C, Keller A, Faden AI (2013) Cell cycle activation contributes to increased neuronal activity in the posterior thalamic nucleus and associated chronic hyperesthesia after rat spinal cord contusion. Neurotherapeutics 10(3):520–538. https://doi.org/10.1007/s13311-013-0198-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crawley AP, Jurkiewicz MT, Yim A, Heyn S, Verrier MC, Fehlings MG, Mikulis DJ (2004) Absence of localized grey matter volume changes in the motor cortex following spinal cord injury. Brain Res 1028(1):19–25. https://doi.org/10.1016/j.brainres.2004.08.060

    Article  CAS  PubMed  Google Scholar 

  26. Mason MR, Lieberman AR, Anderson PN (2003) Corticospinal neurons up-regulate a range of growth-associated genes following intracortical, but not spinal, axotomy. Eur J Neurosci 18(4):789–802. https://doi.org/10.1046/j.1460-9568.2003.02809.x

    Article  CAS  PubMed  Google Scholar 

  27. Nielson JL, Sears-Kraxberger I, Strong MK, Wong JK, Willenberg R, Steward O (2010) Unexpected survival of neurons of origin of the pyramidal tract after spinal cord injury. J Neurosci 30(34):11516–11528. https://doi.org/10.1523/JNEUROSCI.1433-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonatz H, Rohrig S, Mestres P, Meyer M, Giehl KM (2000) An axotomy model for the induction of death of rat and mouse corticospinal neurons in vivo. J Neurosci Methods 100(1–2):105–115. https://doi.org/10.1016/s0165-0270(00)00238-7

    Article  CAS  PubMed  Google Scholar 

  29. Feringa ER, Vahlsing HL (1985) Labeled corticospinal neurons one year after spinal cord transection. Neurosci Lett 58(3):283–286. https://doi.org/10.1016/0304-3940(85)90067-9

    Article  CAS  PubMed  Google Scholar 

  30. Giehl KM, Tetzlaff W (1996) BDNF and NT-3, but not NGF, prevent axotomy-induced death of rat corticospinal neurons in vivo. Eur J Neurosci 8(6):1167–1175. https://doi.org/10.1111/j.1460-9568.1996.tb01284.x

    Article  CAS  PubMed  Google Scholar 

  31. Hains BC, Black JA, Waxman SG (2003) Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 462(3):328–341. https://doi.org/10.1002/cne.10733

    Article  PubMed  Google Scholar 

  32. Hammond EN, Tetzlaff W, Mestres P, Giehl KM (1999) BDNF, but not NT-3, promotes long-term survival of axotomized adult rat corticospinal neurons in vivo. Neuroreport 10(12):2671–2675. https://doi.org/10.1097/00001756-199908200-00043

    Article  CAS  PubMed  Google Scholar 

  33. Klapka N, Hermanns S, Straten G, Masanneck C, Duis S, Hamers FP, Muller D, Zuschratter W et al (2005) Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci 22(12):3047–3058. https://doi.org/10.1111/j.1460-9568.2005.04495.x

    Article  PubMed  Google Scholar 

  34. Cohen ML, Tulsky DS, Holdnack JA, Carlozzi NE, Wong A, Magasi S, Heaton RK, Heinemann AW (2017) Cognition among community-dwelling individuals with spinal cord injury. Rehabil Psychol 62(4):425–434. https://doi.org/10.1037/rep0000140

    Article  PubMed  PubMed Central  Google Scholar 

  35. Collins-Praino LE, Corrigan F (2017) Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury? Brain Behav Immun 60:369–382. https://doi.org/10.1016/j.bbi.2016.09.027

    Article  CAS  PubMed  Google Scholar 

  36. Coulthart MB, Jansen GH, Cashman NR (2016) Evidence for transmissibility of Alzheimer disease pathology: Cause for concern? CMAJ 188(10):E210–E212. https://doi.org/10.1503/cmaj.151257

    Article  PubMed  PubMed Central  Google Scholar 

  37. Craig A, Guest R, Tran Y, Middleton J (2017) Cognitive impairment and mood states after spinal cord injury. J Neurotrauma 34(6):1156–1163. https://doi.org/10.1089/neu.2016.4632

    Article  PubMed  Google Scholar 

  38. Dowler RN, Harrington DL, Haaland KY, Swanda RM, Fee F, Fiedler K (1997) Profiles of cognitive functioning in chronic spinal cord injury and the role of moderating variables. J Int Neuropsychol Soc 3(5):464–472

    CAS  PubMed  Google Scholar 

  39. Jure I, Labombarda F (2017) Spinal cord injury drives chronic brain changes. Neural Regen Res 12(7):1044–1047. https://doi.org/10.4103/1673-5374.211177

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu J, Stoica BA, Luo T, Sabirzhanov B, Zhao Z, Guanciale K, Nayar SK, Foss CA et al (2014) Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation. Cell Cycle 13(15):2446–2458. https://doi.org/10.4161/cc.29420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu J, Zhao Z, Sabirzhanov B, Stoica BA, Kumar A, Luo T, Skovira J, Faden AI (2014) Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J Neurosci 34(33):10989–11006. https://doi.org/10.1523/JNEUROSCI.5110-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayes KC, Hull TC, Delaney GA, Potter PJ, Sequeira KA, Campbell K, Popovich PG (2002) Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J Neurotrauma 19(6):753–761. https://doi.org/10.1089/08977150260139129

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, Kobeissy F, Guingab J et al (2014) Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One 9(3):e92698. https://doi.org/10.1371/journal.pone.0092698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noble LJ, Wrathall JR (1989) Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res 482(1):57–66. https://doi.org/10.1016/0006-8993(89)90542-8

    Article  CAS  PubMed  Google Scholar 

  45. Blennow K, Hardy J, Zetterberg H (2012) The neuropathology and neurobiology of traumatic brain injury. Neuron 76(5):886–899. https://doi.org/10.1016/j.neuron.2012.11.021

    Article  CAS  PubMed  Google Scholar 

  46. Spain A, Daumas S, Lifshitz J, Rhodes J, Andrews PJ, Horsburgh K, Fowler JH (2010) Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. J Neurotrauma 27(8):1429–1438. https://doi.org/10.1089/neu.2010.1288

    Article  PubMed  Google Scholar 

  47. Barkhoudarian G, Hovda DA, Giza CC (2011) The molecular pathophysiology of concussive brain injury. Clin Sports Med 30(1):33–48, vii-iii. https://doi.org/10.1016/j.csm.2010.09.001

    Article  PubMed  Google Scholar 

  48. Giza CC, Hovda DA (2001) The neurometabolic cascade of concussion. J Athl Train 36(3):228–235

    PubMed  PubMed Central  Google Scholar 

  49. Galluzzi L, Blomgren K, Kroemer G (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10(7):481–494. https://doi.org/10.1038/nrn2665

    Article  CAS  PubMed  Google Scholar 

  50. Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79(1–2):231–239. https://doi.org/10.1002/jnr.20292

    Article  CAS  PubMed  Google Scholar 

  51. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23(1):20–26. https://doi.org/10.1016/s0166-2236(99)01479-4

    Article  PubMed  Google Scholar 

  52. Kampfl A, Posmantur RM, Zhao X, Schmutzhard E, Clifton GL, Hayes RL (1997) Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy: implications for pathology and therapy: a review and update. J Neurotrauma 14(3):121–134. https://doi.org/10.1089/neu.1997.14.121

    Article  CAS  PubMed  Google Scholar 

  53. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91(12):5562–5566. https://doi.org/10.1073/pnas.91.12.5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13. https://doi.org/10.1186/1750-1326-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Geschwind DH (2003) Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg? Neuron 40(3):457–460. https://doi.org/10.1016/s0896-6273(03)00681-0

    Article  CAS  PubMed  Google Scholar 

  56. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69. https://doi.org/10.1007/s00401-009-0486-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee HS et al (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68(7):709–735. https://doi.org/10.1097/NEN.0b013e3181a9d503

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen LJ, Wang YJ, Tseng GF (2010) Compression alters kinase and phosphatase activity and tau and MAP2 phosphorylation transiently while inducing the fast adaptive dendritic remodeling of underlying cortical neurons. J Neurotrauma 27(9):1657–1669. https://doi.org/10.1089/neu.2010.1308

    Article  PubMed  Google Scholar 

  59. Hoshino S, Tamaoka A, Takahashi M, Kobayashi S, Furukawa T, Oaki Y, Mori O, Matsuno S et al (1998) Emergence of immunoreactivities for phosphorylated tau and amyloid-beta protein in chronic stage of fluid percussion injury in rat brain. Neuroreport 9(8):1879–1883. https://doi.org/10.1097/00001756-199806010-00039

    Article  CAS  PubMed  Google Scholar 

  60. Lv Q, Lan W, Sun W, Ye R, Fan X, Ma M, Yin Q, Jiang Y et al (2014) Intranasal nerve growth factor attenuates tau phosphorylation in brain after traumatic brain injury in rats. J Neurol Sci 345(1–2):48–55. https://doi.org/10.1016/j.jns.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  61. Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu SJ, Sashindranath M, Medcalf RL, Johnston LA et al (2015) Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138(Pt 5):1297–1313. https://doi.org/10.1093/brain/awv053

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tran HT, LaFerla FM, Holtzman DM, Brody DL (2011) Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-beta accumulation and independently accelerates the development of tau abnormalities. J Neurosci 31(26):9513–9525. https://doi.org/10.1523/JNEUROSCI.0858-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tran HT, Sanchez L, Brody DL (2012) Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol 71(2):116–129. https://doi.org/10.1097/NEN.0b013e3182456aed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang WJ, Chen W, Chen L, Guo YJ, Zeng JS, Li GY, Tong WS (2017) Involvement of tau phosphorylation in traumatic brain injury patients. Acta Neurol Scand 135(6):622–627. https://doi.org/10.1111/ane.12644

    Article  CAS  PubMed  Google Scholar 

  65. Caprelli MT, Mothe AJ, Tator CH (2018) Hyperphosphorylated tau as a novel biomarker for traumatic axonal injury in the spinal cord. J Neurotrauma 35(16):1929–1941. https://doi.org/10.1089/neu.2017.5495

    Article  PubMed  Google Scholar 

  66. Hung KS, Hwang SL, Liang CL, Chen YJ, Lee TH, Liu JK, Howng SL, Wang CH (2005) Calpain inhibitor inhibits p35-p25-Cdk5 activation, decreases tau hyperphosphorylation, and improves neurological function after spinal cord hemisection in rats. J Neuropathol Exp Neurol 64(1):15–26. https://doi.org/10.1093/jnen/64.1.15

    Article  CAS  PubMed  Google Scholar 

  67. Hung KS, Tsai SH, Lee TC, Lin JW, Chang CK, Chiu WT (2007) Gene transfer of insulin-like growth factor-I providing neuroprotection after spinal cord injury in rats. J Neurosurg Spine 6(1):35–46. https://doi.org/10.3171/spi.2007.6.1.35

    Article  PubMed  Google Scholar 

  68. Kondo A, Shahpasand K, Mannix R, Qiu J, Moncaster J, Chen CH, Yao Y, Lin YM et al (2015) Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523(7561):431–436. https://doi.org/10.1038/nature14658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H et al (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27(4):669–682. https://doi.org/10.1089/neu.2009.1080

    Article  PubMed  Google Scholar 

  70. Kwon BK, Streijger F, Fallah N, Noonan VK, Belanger LM, Ritchie L, Paquette SJ, Ailon T et al (2017) Cerebrospinal fluid biomarkers to stratify injury severity and predict outcome in human traumatic spinal cord injury. J Neurotrauma 34(3):567–580. https://doi.org/10.1089/neu.2016.4435

    Article  PubMed  Google Scholar 

  71. Pouw MH, Kwon BK, Verbeek MM, Vos PE, van Kampen A, Fisher CG, Street J, Paquette SJ et al (2014) Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects. Spinal Cord 52(6):428–433. https://doi.org/10.1038/sc.2014.26

    Article  CAS  PubMed  Google Scholar 

  72. Roerig A, Carlson R, Tipold A, Stein VM (2013) Cerebrospinal fluid tau protein as a biomarker for severity of spinal cord injury in dogs with intervertebral disc herniation. Vet J 197(2):253–258. https://doi.org/10.1016/j.tvjl.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  73. Rubenstein R, Chang B, Yue JK, Chiu A, Winkler EA, Puccio AM, Diaz-Arrastia R, Yuh EL et al (2017) Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol 74(9):1063–1072. https://doi.org/10.1001/jamaneurol.2017.0655

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wolf H, Krall C, Pajenda G, Leitgeb J, Bukaty AJ, Hajdu S, Sarahrudi K (2014) Alterations of the biomarker S-100B and NSE in patients with acute vertebral spine fractures. Spine J 14(12):2918–2922. https://doi.org/10.1016/j.spinee.2014.04.027

    Article  PubMed  Google Scholar 

  75. Mori H, Hosoda K, Matsubara E, Nakamoto T, Furiya Y, Endoh R, Usami M, Shoji M et al (1995) Tau in cerebrospinal fluids: establishment of the sandwich ELISA with antibody specific to the repeat sequence in tau. Neurosci Lett 186(2–3):181–183. https://doi.org/10.1016/0304-3940(95)11291-4

    Article  CAS  PubMed  Google Scholar 

  76. Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, Geerts H, Mercken M et al (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155(6):2153–2165. https://doi.org/10.1016/S0002-9440(10)65533-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21. https://doi.org/10.1038/nrn.2015.1

    Article  CAS  PubMed  Google Scholar 

  78. Gerson JE, Kayed R (2013) Formation and propagation of tau oligomeric seeds. Front Neurol 4:93. https://doi.org/10.3389/fneur.2013.00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gerson JE, Mudher A, Kayed R (2016) Potential mechanisms and implications for the formation of tau oligomeric strains. Crit Rev Biochem Mol Biol 51(6):482–496. https://doi.org/10.1080/10409238.2016.1226251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Castillo-Carranza DL, Nilson AN, Van Skike CE, Jahrling JB, Patel K, Garach P, Gerson JE, Sengupta U et al (2017) Cerebral microvascular accumulation of tau oligomers in Alzheimer’s disease and related tauopathies. Aging Dis 8(3):257–266. https://doi.org/10.14336/AD.2017.0112

    Article  PubMed  PubMed Central  Google Scholar 

  81. Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210. https://doi.org/10.1146/annurev-neuro-072116-031153

    Article  CAS  PubMed  Google Scholar 

  82. Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP et al (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179(4):2071–2082. https://doi.org/10.1016/j.ajpath.2011.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 6:39. https://doi.org/10.1186/1750-1326-6-39

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fontaine SN, Sabbagh JJ, Baker J, Martinez-Licha CR, Darling A, Dickey CA (2015) Cellular factors modulating the mechanism of tau protein aggregation. Cell Mol Life Sci 72(10):1863–1879. https://doi.org/10.1007/s00018-015-1839-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12(1):39–49. https://doi.org/10.1016/j.arr.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  86. Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70(3):410–426. https://doi.org/10.1016/j.neuron.2011.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58(9):1010–1019. https://doi.org/10.1097/00005072-199909000-00011

    Article  CAS  PubMed  Google Scholar 

  88. Pei JJ, Grundke-Iqbal I, Iqbal K, Bogdanovic N, Winblad B, Cowburn RF (1998) Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer’s disease neurofibrillary degeneration. Brain Res 797(2):267–277. https://doi.org/10.1016/s0006-8993(98)00296-0

    Article  CAS  PubMed  Google Scholar 

  89. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103(1):26–35. https://doi.org/10.1007/s004010100423

    Article  CAS  PubMed  Google Scholar 

  90. Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11(1):153–163. https://doi.org/10.1016/0896-6273(93)90279-z

    Article  CAS  PubMed  Google Scholar 

  91. Hyman BT (2014) Tau propagation, different tau phenotypes, and prion-like properties of tau. Neuron 82(6):1189–1190. https://doi.org/10.1016/j.neuron.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  92. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22(8):1942–1950. https://doi.org/10.1111/j.1460-9568.2005.04391.x

    Article  PubMed  Google Scholar 

  93. Qian W, Shi J, Yin X, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2010) PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta. J Alzheimers Dis 19(4):1221–1229. https://doi.org/10.3233/JAD-2010-1317

    Article  CAS  PubMed  Google Scholar 

  94. Galas MC, Dourlen P, Begard S, Ando K, Blum D, Hamdane M, Buee L (2006) The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J Biol Chem 281(28):19296–19304. https://doi.org/10.1074/jbc.M601849200

    Article  CAS  PubMed  Google Scholar 

  95. Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K et al (2004) Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J Neurosci 24(10):2401–2411. https://doi.org/10.1523/JNEUROSCI.5561-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Davis DR, Anderton BH, Brion JP, Reynolds CH, Hanger DP (1997) Oxidative stress induces dephosphorylation of tau in rat brain primary neuronal cultures. J Neurochem 68(4):1590–1597. https://doi.org/10.1046/j.1471-4159.1997.68041590.x

    Article  CAS  PubMed  Google Scholar 

  97. Zambrano CA, Egana JT, Nunez MT, Maccioni RB, Gonzalez-Billault C (2004) Oxidative stress promotes tau dephosphorylation in neuronal cells: the roles of cdk5 and PP1. Free Radic Biol Med 36(11):1393–1402. https://doi.org/10.1016/j.freeradbiomed.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  98. Dumont M, Stack C, Elipenahli C, Jainuddin S, Gerges M, Starkova NN, Yang L, Starkov AA et al (2011) Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J 25(11):4063–4072. https://doi.org/10.1096/fj.11-186650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Su B, Wang X, Lee HG, Tabaton M, Perry G, Smith MA, Zhu X (2010) Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neurosci Lett 468(3):267–271. https://doi.org/10.1016/j.neulet.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  100. Taoka Y, Okajima K (1998) Spinal cord injury in the rat. Prog Neurobiol 56(3):341–358. https://doi.org/10.1016/s0301-0082(98)00049-5

    Article  CAS  PubMed  Google Scholar 

  101. Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11(Suppl 1):13–22

    PubMed  Google Scholar 

  102. Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, Balentine JD (1981) Ca2+-accumulation in experimental spinal cord trauma. Brain Res 211(2):476–479. https://doi.org/10.1016/0006-8993(81)90976-8

    Article  CAS  PubMed  Google Scholar 

  103. Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547(2):344–348. https://doi.org/10.1016/0006-8993(91)90984-4

    Article  CAS  PubMed  Google Scholar 

  104. Moriya T, Hassan AZ, Young W, Chesler M (1994) Dynamics of extracellular calcium activity following contusion of the rat spinal cord. J Neurotrauma 11(3):255–263. https://doi.org/10.1089/neu.1994.11.255

    Article  CAS  PubMed  Google Scholar 

  105. Young W (1992) Role of calcium in central nervous system injuries. J Neurotrauma 9(Suppl 1):S9–S25

    PubMed  Google Scholar 

  106. Banik NL, Matzelle DC, Gantt-Wilford G, Osborne A, Hogan EL (1997) Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury. Brain Res 752(1–2):301–306. https://doi.org/10.1016/s0006-8993(96)01488-6

    Article  CAS  PubMed  Google Scholar 

  107. Wingrave JM, Schaecher KE, Sribnick EA, Wilford GG, Ray SK, Hazen-Martin DJ, Hogan EL, Banik NL (2003) Early induction of secondary injury factors causing activation of calpain and mitochondria-mediated neuronal apoptosis following spinal cord injury in rats. J Neurosci Res 73(1):95–104. https://doi.org/10.1002/jnr.10607

    Article  CAS  PubMed  Google Scholar 

  108. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8(10):783–793. https://doi.org/10.1038/nrd2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18(1):29–42. https://doi.org/10.1016/s0896-6273(01)80044-1

    Article  CAS  PubMed  Google Scholar 

  110. Maccioni RB, Otth C, Concha II, Munoz JP (2001) The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology. Eur J Biochem 268(6):1518–1527. https://doi.org/10.1046/j.1432-1033.2001.02024.x

    Article  CAS  PubMed  Google Scholar 

  111. Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405(6784):360–364. https://doi.org/10.1038/35012636

    Article  CAS  PubMed  Google Scholar 

  112. Zhang SX, Underwood M, Landfield A, Huang FF, Gison S, Geddes JW (2000) Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol 59(4):287–296. https://doi.org/10.1093/jnen/59.4.287

    Article  CAS  PubMed  Google Scholar 

  113. Cheng CM, Mervis RF, Niu SL, Salem N Jr, Witters LA, Tseng V, Reinhardt R, Bondy CA (2003) Insulin-like growth factor 1 is essential for normal dendritic growth. J Neurosci Res 73(1):1–9. https://doi.org/10.1002/jnr.10634

    Article  CAS  PubMed  Google Scholar 

  114. Niblock MM, Brunso-Bechtold JK, Riddle DR (2000) Insulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex. J Neurosci 20(11):4165–4176

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA (2000) Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci U S A 97(18):10236–10241. https://doi.org/10.1073/pnas.170008497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hong M, Lee VM (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 272(31):19547–19553. https://doi.org/10.1074/jbc.272.31.19547

    Article  CAS  PubMed  Google Scholar 

  117. Qi ZP, Wang GX, Xia P, Hou TT, Zhou HL, Wang TJ, Yang XY (2016) Effects of microtubule-associated protein tau expression on neural stem cell migration after spinal cord injury. Neural Regen Res 11(2):332–337. https://doi.org/10.4103/1673-5374.177744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schneider L, Reichert E, Faulkner J, Reichert B, Sonnen J, Hawryluk GWJ (2019) CNS inflammation and neurodegeneration: sequelae of peripheral inoculation with spinal cord tissue in rat. J Neurosurg 132:1–12. https://doi.org/10.3171/2018.10.JNS181517

    Article  Google Scholar 

  119. Tang Y, Liu HL, Min LX, Yuan HS, Guo L, Han PB, Lu YX, Zhong JF et al (2019) Serum and cerebrospinal fluid tau protein level as biomarkers for evaluating acute spinal cord injury severity and motor function outcome. Neural Regen Res 14(5):896–902. https://doi.org/10.4103/1673-5374.249238

    Article  PubMed  PubMed Central  Google Scholar 

  120. Frankel HL, Hancock DO, Hyslop G, Melzak J, Michaelis LS, Ungar GH, Vernon JD, Walsh JJ (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia 7(3):179–192. https://doi.org/10.1038/sc.1969.30

    Article  CAS  Google Scholar 

  121. Kirshblum S, Waring W 3rd (2014) Updates for the international standards for neurological classification of spinal cord injury. Phys Med Rehabil Clin N Am 25(3):505–517, vii. https://doi.org/10.1016/j.pmr.2014.04.001

    Article  PubMed  Google Scholar 

  122. Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, Haak M, Hudson LM et al (2003) International standards for neurological classification of spinal cord injury. J Spinal Cord Med 26(Suppl 1):S50–S56. https://doi.org/10.1080/10790268.2003.11754575

    Article  PubMed  Google Scholar 

  123. Burns AS, Lee BS, Ditunno JF Jr, Tessler A (2003) Patient selection for clinical trials: the reliability of the early spinal cord injury examination. J Neurotrauma 20(5):477–482. https://doi.org/10.1089/089771503765355540

    Article  PubMed  Google Scholar 

  124. Lee RS, Noonan VK, Batke J, Ghag A, Paquette SJ, Boyd MC, Fisher CG, Street J et al (2012) Feasibility of patient recruitment into clinical trials of experimental treatments for acute spinal cord injury. J Clin Neurosci 19(10):1338–1343. https://doi.org/10.1016/j.jocn.2012.02.015

    Article  PubMed  Google Scholar 

  125. Nakamura K, Zhen Zhou X, Ping Lu K (2013) Cis phosphorylated tau as the earliest detectable pathogenic conformation in Alzheimer disease, offering novel diagnostic and therapeutic strategies. Prion 7(2):117–120. https://doi.org/10.4161/pri.22849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nakamura K, Zhou XZ, Lu KP (2013) Distinct functions of cis and trans phosphorylated tau in Alzheimer’s disease and their therapeutic implications. Curr Mol Med 13(7):1098–1109. https://doi.org/10.2174/1566524011313070001

    Article  CAS  PubMed  Google Scholar 

  127. Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380(6574):544–547. https://doi.org/10.1038/380544a0

    Article  CAS  PubMed  Google Scholar 

  128. Ranganathan R, Lu KP, Hunter T, Noel JP (1997) Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell 89(6):875–886. https://doi.org/10.1016/s0092-8674(00)80273-1

    Article  CAS  PubMed  Google Scholar 

  129. Yaffe MB, Schutkowski M, Shen M, Zhou XZ, Stukenberg PT, Rahfeld JU, Xu J, Kuang J et al (1997) Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278(5345):1957–1960. https://doi.org/10.1126/science.278.5345.1957

    Article  CAS  PubMed  Google Scholar 

  130. Albayram O, Kondo A, Mannix R, Smith C, Tsai CY, Li C, Herbert MK, Qiu J et al (2017) Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun 8(1):1000. https://doi.org/10.1038/s41467-017-01068-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Farhadi A, Vosough M, Zhang JS, Tahamtani Y, Shahpasand K (2019) A possible neurodegeneration mechanism triggered by diabetes. Trends Endocrinol Metab 30(10):692–700. https://doi.org/10.1016/j.tem.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  132. Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Nicholson L, Zhou XZ, Lu KP (2012) Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer’s disease. Cell 149(1):232–244. https://doi.org/10.1016/j.cell.2012.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The grant of this study was provided by the Neurosciences Research Center of Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (code of ethics: IR.TBZMED.VCR.REC.1398.067) and Council for Stem Cell Sciences and Technologies, Tehran, Iran (grant number: 11/35721).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Elnaz Nakhjiri expressed the idea of the article and performed the literature search. The first draft of the manuscript was written by Elnaz Nakhjiri, Koorosh Shahpasand, and Parviz Shahabi. All authors edited the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Parviz Shahabi or Koorosh Shahpasand.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhjiri, E., Vafaee, M.S., Hojjati, S.M.M. et al. Tau Pathology Triggered by Spinal Cord Injury Can Play a Critical Role in the Neurotrauma Development. Mol Neurobiol 57, 4845–4855 (2020). https://doi.org/10.1007/s12035-020-02061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02061-7

Keywords

Navigation