Skip to main content
Log in

Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced Ferroptosis in Dopaminergic Cells

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder primarily caused by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). However, the manner of death of dopaminergic neurons remains indistinct. Ferroptosis is a form of cell death involving in the iron-dependent accumulation of glutathione depletion and lipid peroxide. Besides, previous studies indicated that ferroptosis might be involved in the death of dopaminergic neurons. In this study, we aim to explore the protective effect of the p62-Keap1-Nrf2 pathway against 6-hydroxydopamine (6-OHDA)-induced ferroptosis in dopaminergic cells. Firstly, our results demonstrated that 6-OHDA-induced ferroptosis could be observed in vivo zebrafish and in vitro human dopaminergic cell line (SH-SY5Y cells) model. Moreover, ferroptosis induced by 6-OHDA mitigates in SH-SY5Y cells upon ferrostatin-1 (Fer, an inhibitor of ferroptosis) treatment via upregulating the protein expression of glutathione peroxidase 4 (GPX4). Then, we found that high p62/SQSTM1 (p62) expression could protect SH-SY5Y cells against ferroptosis through promoting Nrf2 nuclear transfer and upregulating the expression of the antioxidant protein heme oxygenase-1 (HO-1). Ultimately, high p62 expression activates the Nrf2/HO-1 signaling pathway through binding to Kelch-like ECH-associated protein 1 (Keap1). Collectively, the activation of the p62-Keap1-Nrf2 pathway prevents 6-OHDA-induced ferroptosis in SH-SY5Y cells, targeting this pathway in combination with a pharmacological inhibitor of ferroptosis can be a potential approach for PD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

6-OHDA:

6-Hydroxydopamine

Fer:

Ferrostatin-1

HO-1:

Heme oxygenase-1

Nrf2:

Nuclear factor erythroid 2-like 2

SNpc:

Substantia nigra pars compacta

GPX4:

Glutathione peroxidase 4

ACSL4:

Acyl-CoA synthetase-4

α-syn:

α-Synuclein

Nec:

Necrosulfonamide

Keap1:

Kelch-like ECH-associated protein 1

ZnPP:

Zn-protoporphyrin

p62:

p62/SQSTM1

BCA:

Bicinchoninic acid

References

  1. Bosboom JLW, Stoffers D, Wolters EC (2004) Cognitive dysfunction and dementia in Parkinson’s disease. Parkinsonism Relat Disord 111:1303–1315

    CAS  Google Scholar 

  2. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang Y-N, Yang S-W, Zhang X, Luo L-M, Chen N-H (2018) Mechanism of ferroptosis and its role in neurological diseases. Chin Pharmacol Bull 34:166–169

    Google Scholar 

  5. Scott A, Peng L (2014) Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. Biomed Res Int 2014:1–9

    Google Scholar 

  6. Berg D, Hochstrasser H (2006) Iron metabolism in Parkinsonian syndromes. Mov Disord 21:1299–1310

    PubMed  Google Scholar 

  7. Kaur D, Andersen J (2014) Does cellular iron dysregulation play a causative role in Parkinson’s disease? Ageing Res Rev 3:327–343

    Google Scholar 

  8. Arendash GW, Olanow CW, Sengstock GJ, Intranigral iron infusion in rats: a progressive model for excess nigral iron levels in Parkinson’s disease? Iron Central Nerv Syst Dis (1993) 87–101.

  9. Dexter DT, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation in Parkinson’s disease. Lancet 2:639–640

    CAS  PubMed  Google Scholar 

  10. Dexter DT, Holley AE, Flitter WD, Slater TF, Marsden CD (1994) Increased levels of lipid hydroperoxides in the Parkinsonian Substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97

    CAS  PubMed  Google Scholar 

  11. Spencer JPE, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B (2002) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species&nbsp. J Neurochem 71:2112–2122

    Google Scholar 

  12. Lan AP, Chen J, Chai ZF, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals. 29:665–678

    CAS  PubMed  Google Scholar 

  13. Blandini F, Armentero M-T, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14:S124–S129

    PubMed  Google Scholar 

  14. Thoenen H, Tranzer JP (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Archiv für Pharmakologie und experimentelle Pathologie 261:271–288

    CAS  Google Scholar 

  15. Luthman J, Fredriksson A, Sundström E, Jonsson G, Archer T (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 33:267–277

    CAS  PubMed  Google Scholar 

  16. Zhang Z, Hou L, Li X, Ju C, Zhang J, Li X, Wang X, Liu C et al (2015) Neuroprotection of inositol hexaphosphate and changes of mitochondrion mediated apoptotic pathway and α-synuclein aggregation in 6-OHDA induced Parkinson’s disease cell model. Brain Res 1633:87–95

    PubMed  Google Scholar 

  17. Sachs C, Jonsson G (1975) Mechanisms of action of 6-hydroxydopamine. Biochem Pharmacol 24:1–8

    CAS  PubMed  Google Scholar 

  18. Ben-Shachar D, Youdim MBH (2006) Intranigral Iron injection induces behavioral and biochemical “parkinsonism” in rats. J Neurochem 57:2133–2135

    Google Scholar 

  19. Szklarz G (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401

    Google Scholar 

  20. Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557

    CAS  PubMed  Google Scholar 

  21. Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    CAS  PubMed  Google Scholar 

  22. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    CAS  PubMed  Google Scholar 

  23. Jain A, Lamark T, Sjottem E, Bowitz Larsen K, Atesoh Awuh J, Overvatn A, McMahon M, Hayes JD et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285:22576–22591

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Komatsu M, Kurokawa H et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:399–403

    Google Scholar 

  25. Sun X, Zhanhui O, Chen R, Niu X, Chen D, Kang R, Tang D (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184

    CAS  PubMed  Google Scholar 

  26. Yoshinobu I, Masaaki K (2018) Activation of p62/SQSTM1–Keap1–nuclear factor erythroid 2-related factor 2 pathway in cancer. Front Oncol 8:1–8

    Google Scholar 

  27. Hayashi K, Dan K, Goto F, Tshuchihashi N, Ogawa K (2014) The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress. Cell Signal 27:382–393

    PubMed  Google Scholar 

  28. Chao Z, Chuwen L, Shenghui C, Zhiping L, Xuejing J (2017) Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox Biol 11:1–11

    Google Scholar 

  29. Bitzur S, Kam Z, Geiger B (1994) Structure and distribution of N-cadherin in developing zebrafish embryos: morphogenetic effects of ectopic over-expression. Dev Dyn 201:121–136

    CAS  PubMed  Google Scholar 

  30. Eruslanov E, Kusmartsev S (2010) Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 594:57–72

    CAS  PubMed  Google Scholar 

  31. Tomita K, Fukumoto M, Itoh K, Kuwahara Y, Igarashi K, Nagasawa T, Suzuki M, Kurimasa A et al (2019) MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells. Biochem Biophys Res Commun 518:712–718

    CAS  PubMed  Google Scholar 

  32. Kagan VE, Mao G, Feng Q, Angeli JPF, Bayır H (2016) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90

    PubMed  PubMed Central  Google Scholar 

  33. Sun Y, Wang L, Lu Q, He L, Hua W, Zhang S, Wang T, Gu W et al (2020) Phenols fragment of Veronica ciliata Fisch. ameliorate free radical-induced nonalcoholic fatty liver disease by mediating PI3K/Akt signaling pathway. J Ethnopharmacol 253:112579

    CAS  PubMed  Google Scholar 

  34. Vetter I, Mozar CA, Durek T, Wingerd JS, Alewood PF, Christie MJ, Lewis RJ (2012) Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochem Pharmacol 83:1562–1571

    CAS  PubMed  Google Scholar 

  35. Chao XJ, Chen ZW, Liu AM, He XX, Wang SG, Wang YT, Liu PQ, Ramassamy C et al (2014) Effect of tacrine-3-caffeic acid, a novel multifunctional anti-Alzheimer’s dimer, against oxidative-stress-induced cell death in HT22 hippocampal neurons: involvement of Nrf2/HO-1 pathway. Cns Neurosci Ther 20:840–850

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan LL, Liu XH, Jia YL, Wu D, Xiong QH, Gong QH, Wang Y, Zhu YZ (2013) A novel compound derived from danshensu inhibits apoptosis via upregulation of heme oxygenase-1 expression in SH-SY5Y cells. Biochim Biophys Acta 1830:2861–2871

    CAS  PubMed  Google Scholar 

  37. Ferrari-Toninelli G, Paccioretti S, Francisconi S, Uberti D, Memo M (2004) TorsinA negatively controls neurite outgrowth of SH-SY5Y human neuronal cell line. Brain Res 1012:75–81

    CAS  PubMed  Google Scholar 

  38. Bandmann O, Burton EA (2010) Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 40:58–65

    CAS  PubMed  Google Scholar 

  39. Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish. 3:235–247

    CAS  PubMed  Google Scholar 

  40. Mckinley ET, Baranowski TC, Blavo DO, Cato C, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 141:128–137

    CAS  PubMed  Google Scholar 

  41. Pinho BR, Reis SD, Hartley RC, Murphy MP, Oliveira JMA (2019) Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic Biol Med 130:318–327

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Latunde-Dada OG (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta 1861:1893–1900

    CAS  Google Scholar 

  43. Ham A, Kim D-W, Kim KH, Lee S-J, Oh K-B, Shin J, Shin J (2013) Reynosin protects against neuronal toxicity in dopamine-induced SH-SY5Y cells and 6-hydroxydopamine-lesioned rats as models of Parkinson’s disease: reciprocal up-regulation of E6-AP and down-regulation of α-synuclein. Brain Res 1524:54–61

    CAS  PubMed  Google Scholar 

  44. Zhang Z, Hou L, Li XH, Zhang JY, Li X, Wang XL, Liu C, Lv YQ et al (2016) Neuroprotection of inositol hexaphosphate and changes of mitochondrion mediated apoptotic pathway and α-synuclein aggregation in 6-OHDA induced parkinson’s disease cell model. Brain Res 1633:87–95

    CAS  PubMed  Google Scholar 

  45. Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS et al (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507–515

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 133:144–152

    CAS  PubMed  Google Scholar 

  47. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98

    CAS  PubMed  Google Scholar 

  48. Daiha S, Kim EH, Jaewang L, Jong-Lyel R (2018) Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med 129:454–462.a

    Google Scholar 

  49. Fang XX, Wang H, Han D et al (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci 116:2672–2680

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Van BD, Gouel F, Gouel F et al (2016) Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC. Neurobiol Dis 94:169–178

    PubMed  Google Scholar 

  51. Kaur D, Andersen J (2004) Does cellular iron dysregulation play a causative role in Parkinson’s disease? Ageing Res Rev 3:327–343

    CAS  PubMed  Google Scholar 

  52. Hare DJ, Double KL (2016) Iron and dopamine: a toxic couple. Brain. 139:1026–1035

    PubMed  Google Scholar 

  53. Song N, Xie JX (2018) Iron, dopamine, and α-Synuclein interactions in at-risk dopaminergic neurons in Parkinson’s disease. Neurosci Bull 34:150–152

    Google Scholar 

  54. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Holmay MJ, Terpstra M, Coles LD (2013) N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson’s diseases. Clin Neuropharmacol 36:103–106

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang H, Luan Z, Wang J, Xie JX (2006) Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 49:605–609

    CAS  PubMed  Google Scholar 

  57. Yuan H, Li XM, Zhang XY, Kang R, Tang DL (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343

    CAS  PubMed  Google Scholar 

  58. Yang CH, Zhang XJ, Fan HG, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141

    CAS  PubMed  Google Scholar 

  59. Zhang H, Liu YY, Jiang Q, Li KR, Zhao YX, Cao C, Yao J (2014) Salvianolic acid A protects RPE cells against oxidative stress through activation of Nrf2/HO-1 signaling. Free Radic Biol Med 69:219–228

    CAS  PubMed  Google Scholar 

  60. Zhang ZJ, Cui W, Li GH, Yuan S, Xu DP, Hoi MPM, Lin ZH, Dou J et al (2012) Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCα and PI3K/AKT signaling pathways. J Agric Food Chem 60:8171–8182

    CAS  PubMed  Google Scholar 

  61. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell Mol Life Sci Cmls 73:3221–3247

    CAS  PubMed  Google Scholar 

  62. Jiang T, Cheng H, Su J, Wang X, Wang Q, Chu J, Li Q (2020) Gastrodin protects against glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway. Toxicol in Vitro 62:104715

    PubMed  Google Scholar 

  63. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    PubMed  PubMed Central  Google Scholar 

  64. Megumi T, Hidesato O, Koujin T et al (2018) p62/SQSTM1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy. Febs Open Bio 8:470–480

    Google Scholar 

  65. Yoshinori K, Yoshinobu I, Masaaki K (2016) Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Curr Opin Toxicol 1:54–61

    Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (No. 31570351) and Sichuan Province Key Research and Development Projects (2020YFS0281).

Author information

Authors and Affiliations

Authors

Contributions

Yiran Sun, Libo He, Taoyu Wang, and Wan Hua designed and performed the experiments; Yiran Sun, Huan Qin, Jingjin Wang, Li Wang, Wanqin Gu, Tingting Li, Na Li, and Xinanbei Liu for formal analysis and validation; Yiran Sun wrote the original draft and Libo He, Wan Hua, and Lin Tang reviewed and edited the manuscript; Fang Chen and Lin Tang provided reagents and technical support.

Corresponding author

Correspondence to Lin Tang.

Ethics declarations

All fish experiments were performed following the guidelines issued by the animal ethics committee (AAALAC Certificate NO.001458).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., He, L., Wang, T. et al. Activation of p62-Keap1-Nrf2 Pathway Protects 6-Hydroxydopamine-Induced Ferroptosis in Dopaminergic Cells. Mol Neurobiol 57, 4628–4641 (2020). https://doi.org/10.1007/s12035-020-02049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02049-3

Keywords

Navigation