Skip to main content

Advertisement

Log in

Extracellular Vesicles in the Forebrain Display Reduced miR-346 and miR-331-3p in a Rat Model of Chronic Temporal Lobe Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

An initial precipitating injury in the brain, such as after status epilepticus (SE), evolves into chronic temporal lobe epilepsy (TLE). We investigated changes in the miRNA composition of extracellular vesicles (EVs) in the forebrain after the establishment of SE-induced chronic TLE. We induced SE in young Fischer 344 rats through graded intraperitoneal injections of kainic acid, which resulted in consistent spontaneous recurrent seizures at ~ 3 months post-SE. We isolated EVs from the entire forebrain of chronically epileptic rats and age-matched naïve control animals through an ultracentrifugation method and performed miRNA-sequencing studies to discern changes in the miRNA composition of forebrain-derived EVs in chronic epilepsy. EVs from both naïve and epileptic forebrains displayed spherical or cup-shaped morphology, a comparable size range, and CD63 expression but lacked the expression of a deep cellular marker GM130. However, miRNA-sequencing studies suggested downregulation of 3 miRNAs (miR-187-5p, miR-346, and miR-331-3p) and upregulation of 4 miRNAs (miR-490-5p, miR-376b-3p, miR-493-5p, and miR-124-5p) in EVs from epileptic forebrains with fold changes ranging from 1.5 to 2.4 (p < 0.0006; FDR < 0.05). By using geNorm and Normfinder software, we identified miR-487 and miR-221 as the best combination of reference genes for measurement of altered miRNAs found in the epileptic forebrain through qRT-PCR studies. The validation revealed that only miR-346 and miR-331-3p were significantly downregulated in EVs from the epileptic forebrain. The enrichment pathway analysis of these miRNAs showed an overrepresentation of signaling pathways that are linked to molecular mechanisms underlying chronic epilepsy, including GABA-ergic (miR-346 targets) and mTOR (miR-331-3p targets) systems. Thus, the packaging of two miRNAs into EVs in neural cells is considerably altered in chronic epilepsy. Functional studies on these two miRNAs may uncover their role in the pathophysiology and treatment of TLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Devinsky O, Vezzani A, O’Brien TJ et al (2018) Epilepsy. Nat Rev Dis Primers 4:18024. https://doi.org/10.1038/nrdp.2018.24

    Article  PubMed  Google Scholar 

  2. Fisher PD, Sperber EF, Moshé SL (1998) Hippocampal sclerosis revisited. Brain Dev 20:563–573. https://doi.org/10.1016/S0387-7604(98)00069-2

    Article  PubMed  CAS  Google Scholar 

  3. Shetty AK, Zaman V, Hattiangady B (2005) Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci 25:8391–8401. https://doi.org/10.1523/JNEUROSCI.1538-05.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rao MS, Hattiangady B, Reddy DS, Shetty AK (2006) Hippocampal neurodegeneration, spontaneous seizures, and mossy fiber sprouting in the F344 rat model of temporal lobe epilepsy. J Neurosci Res 83:1088–1105. https://doi.org/10.1002/jnr.20802

    Article  PubMed  CAS  Google Scholar 

  5. Hattiangady B, Kuruba R, Shetty AK (2011) Acute seizures in old age leads to a greater loss of CA1 pyramidal neurons, an increased propensity for developing chronic TLE and a severe cognitive dysfunction. Aging Dis 2:1–17

    PubMed  PubMed Central  Google Scholar 

  6. Shetty AK (2002) Entorhinal axons exhibit sprouting in CA1 subfield of the adult hippocampus in a rat model of temporal lobe epilepsy. Hippocampus 12:534–542. https://doi.org/10.1002/hipo.10031

    Article  PubMed  Google Scholar 

  7. Hattiangady B, Rao MS, Shetty AK (2004) Chronic temporal lobe epilepsy is associated with severely declined dentate neurogenesis in the adult hippocampus. Neurobiol Dis 17:473–490. https://doi.org/10.1016/j.nbd.2004.08.008

    Article  PubMed  CAS  Google Scholar 

  8. Rao MS, Hattiangady B (2008) Shetty AK (2008) Status epilepticus during old age is not associated with enhanced hippocampal neurogenesis. Hippocampus. 18(9):931–944. https://doi.org/10.1002/hipo.20449

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vannest J, Szaflarski JP, Privitera MD, Schefft BK, Holland SK (2008) Medial temporal fMRI activation reflects memory lateralization and memory performance in patients with epilepsy. Epilepsy Behav 12:410–418. https://doi.org/10.1016/j.yebeh.2007.11.012

    Article  PubMed  Google Scholar 

  10. Shetty AK, Turner DA (1999) Aging impairs axonal sprouting response of dentate granule cells following target loss and partial deafferentation. J Comp Neurol 414(2):238–254

    Article  CAS  Google Scholar 

  11. Hattiangady B, Shetty AK (2010) Decreased neuronal differentiation of newly generated cells underlies reduced hippocampal neurogenesis in chronic temporal lobe epilepsy. Hippocampus 20:97–112. https://doi.org/10.1002/hipo.20594

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shetty AK, Upadhya D (2016) GABA-ergic cell therapy for epilepsy: advances, limitations and challenges. Neurosci Biobehav Rev 62:35–47. https://doi.org/10.1016/j.neubiorev.2015.12.014

    Article  PubMed  CAS  Google Scholar 

  13. Shetty AK (2014) Hippocampal injury-induced cognitive and mood dysfunction, altered neurogenesis, and epilepsy: can early neural stem cell grafting intervention provide protection? Epilepsy Behav 38:117–124. https://doi.org/10.1016/j.yebeh.2013.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hattiangady B, Shetty AK (2012) Neural stem cell grafting counteracts hippocampal injury-mediated impairments in mood, memory, and neurogenesis. Stem Cells Transl Med 9:696–708. https://doi.org/10.5966/sctm.2012-0050

    Article  CAS  Google Scholar 

  15. Upadhya D, Hattiangady B, Castro OW, Shuai B, Kodali M, Attaluri S, Bates A, Dong Y et al (2019) Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc Natl Acad Sci U S A 116:287–296. https://doi.org/10.1073/pnas.1814185115

    Article  PubMed  CAS  Google Scholar 

  16. Elliott RC, Miles MF, Lowenstein DH (2003) Overlapping microarray profiles of dentate gyrus gene expression during development- and epilepsy-associated neurogenesis and axon outgrowth. J Neurosci 23:2218–2227

    Article  CAS  Google Scholar 

  17. Lukasiuk K, Kontula L, Pitkänen A (2003) cDNA profiling of epileptogenesis in the rat brain. Eur J Neurosci 17:271–279

    Article  Google Scholar 

  18. Hunsberger JG, Bennett AH, Selvanayagam E et al (2005) Gene profiling the response to kainic acid induced seizures. Brain Res Mol Brain Res 141:95–112. https://doi.org/10.1016/j.molbrainres.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  19. Gorter JA, van Vliet EA, Aronica E et al (2006) Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy. J Neurosci 26:11083–11110. https://doi.org/10.1523/JNEUROSCI.2766-06.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jimenez-Mateos EM, Hatazaki S, Johnson MB, Bellver-Estelles C, Mouri G, Bonner C, Prehn JH, Meller R et al (2008) Hippocampal transcriptome after status epilepticus in mice rendered seizure damage-tolerant by epileptic preconditioning features suppressed calcium and neuronal excitability pathways. Neurobiology of Disease 32:442–453. https://doi.org/10.1016/j.nbd.2008.08.008

    Article  PubMed  CAS  Google Scholar 

  21. Romcy-Pereira RN, Gitaí DLG, Gitaí LLG et al (2008) Genes e epilepsia II: expressão gênica diferencial. Rev Assoc Méd Bras 54. https://doi.org/10.1590/S0104-42302008000500022

  22. Laurén HB, Lopez-Picon FR, Brandt AM, Rios-Rojas CJ, Holopainen IE (2010) Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats. PLoS One 5:e10733. https://doi.org/10.1371/journal.pone.0010733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. de Araújo MA, Marques TEBS, Octacílio-Silva S et al (2016) Identification of microRNAs with dysregulated expression in status epilepticus induced epileptogenesis. PLoS One 11:e0163855. https://doi.org/10.1371/journal.pone.0163855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kinjo ER, Higa GSV, Santos BA, de Sousa E, Damico MV, Walter LT, Morya E, Valle AC et al (2016) Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep 6:6–13. https://doi.org/10.1038/srep20969

    Article  CAS  Google Scholar 

  25. Gitaí DLG, Fachin AL, Mello SS, Elias CF, Bittencourt JC, Leite JP, Passos GA, Garcia-Cairasco N et al (2011) The non-coding RNA BC1 is down-regulated in the hippocampus of Wistar Audiogenic Rat (WAR) strain after audiogenic kindling. Brain Res 1367:114–121. https://doi.org/10.1016/j.brainres.2010.10.069

    Article  PubMed  CAS  Google Scholar 

  26. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan R, Tanaka K, Mouri G, Sano T, O'Tuathaigh C et al (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18:1087–1094. https://doi.org/10.1038/nm.2834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lee DY, Moon J, Lee S-T, Jung KH, Park DK, Yoo JS, Sunwoo JS, Byun JI et al (2015) Dysregulation of long non-coding RNAs in mouse models of localization-related epilepsy. Biochem Biophys Res Commun 462:433–440. https://doi.org/10.1016/j.bbrc.2015.04.149

    Article  PubMed  CAS  Google Scholar 

  28. Miller-Delaney SFC, Bryan K, Das S, McKiernan R, Bray IM, Reynolds JP, Gwinn R, Stallings RL et al (2015) Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 138:616–631. https://doi.org/10.1093/brain/awu373

    Article  PubMed  Google Scholar 

  29. Kiese K, Jablonski J, Hackenbracht J, Wrosch JK, Groemer TW, Kornhuber J, Blümcke I, Kobow K (2017) Epigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons. Acta Neuropathol Commun 5:79. https://doi.org/10.1186/s40478-017-0485-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hauser RM, Henshall DC, Lubin FD (2018) The epigenetics of epilepsy and its progression. Neuroscientist 24:186–200. https://doi.org/10.1177/1073858417705840

    Article  PubMed  CAS  Google Scholar 

  31. Henshall DC (2018) Epigenetic changes in status epilepticus. Epilepsia 59(Suppl 2):82–86. https://doi.org/10.1111/epi.14502

    Article  PubMed  CAS  Google Scholar 

  32. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. https://doi.org/10.1016/j.cell.2004.12.035

    Article  PubMed  CAS  Google Scholar 

  33. Fiorenza A, Lopez-Atalaya JP, Rovira V, Scandaglia M, Geijo-Barrientos E, Barco A (2016) Blocking miRNA biogenesis in adult forebrain neurons enhances seizure susceptibility, fear memory, and food intake by increasing neuronal responsiveness. Cereb Cortex 26:1619–1633. https://doi.org/10.1093/cercor/bhu332

    Article  PubMed  Google Scholar 

  34. Risbud RM, Porter BE (2013) Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS One 8:e53464. https://doi.org/10.1371/journal.pone.0053464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Henshall DC, Hamer HM, Pasterkamp RJ, Goldstein DB, Kjems J, Prehn JHM, Schorge S, Lamottke K et al (2016) MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurol 15:1368–1376. https://doi.org/10.1016/S1474-4422(16)30246-0

    Article  PubMed  CAS  Google Scholar 

  36. Surges R, Kretschmann A, Abnaof K, van Rikxoort M, Ridder K, Fröhlich H, Danis B, Kaminski RM et al (2016) Changes in serum miRNAs following generalized convulsive seizures in human mesial temporal lobe epilepsy. Biochem Biophys Res Commun 481:13–18. https://doi.org/10.1016/j.bbrc.2016.11.029

    Article  PubMed  CAS  Google Scholar 

  37. Raoof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F, Lang J, Onugoren MD, Hamer H et al (2017) Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 7:3328. https://doi.org/10.1038/s41598-017-02969-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Raoof R, Bauer S, El Naggar H et al (2018) Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine 38:127–141. https://doi.org/10.1016/j.ebiom.2018.10.068

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bayraktar R, Van Roosbroeck K, Calin GA (2017) Cell-to-cell communication: microRNAs as hormones. Mol Oncol 11:1673–1686. https://doi.org/10.1002/1878-0261.12144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Paolicelli RC, Bergamini G, Rajendran L (2019) Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 405:148–157. https://doi.org/10.1016/j.neuroscience.2018.04.003

    Article  PubMed  CAS  Google Scholar 

  41. Goetzl L, Merabova N, Darbinian N, Martirosyan D, Poletto E, Fugarolas K, Menkiti O (2018) Diagnostic potential of neural exosome cargo as biomarkers for acute brain injury. Ann Clin Transl Neurol 5:4–10. https://doi.org/10.1002/acn3.499

    Article  PubMed  CAS  Google Scholar 

  42. Vogel A, Upadhya R, Shetty AK (2018) Neural stem cell derived extracellular vesicles: attributes and prospects for treating neurodegenerative disorders. EBioMedicine 38:273–282. https://doi.org/10.1016/j.ebiom.2018.11.026

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu X, Yuan W, Yang L, Li J, Cai J (2019) miRNA profiling of exosomes from spontaneous hypertensive rats using next-generation sequencing. J Cardiovasc Transl Res 12:75–83. https://doi.org/10.1007/s12265-017-9784-7

    Article  PubMed  Google Scholar 

  44. Manna I, Iaccino E, Dattilo V, Barone S, Vecchio E, Mimmi S, Filippelli E, Demonte G et al (2018) Exosome-associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. The FASEB Journal 32:4241–4246. https://doi.org/10.1096/fj.201701533R

    Article  PubMed  CAS  Google Scholar 

  45. van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705. https://doi.org/10.1124/pr.112.005983

    Article  PubMed  CAS  Google Scholar 

  46. Willms E, Cabañas C, Mäger I, Wood MJA, Vader P (2018) Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Frontiers in Immunology 9:738. https://doi.org/10.3389/fimmu.2018.00738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383. https://doi.org/10.1083/jcb.201211138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Isola A, Chen S (2016) Exosomes: the messengers of health and disease. Current Neuropharmacology 15:157–165

    Article  Google Scholar 

  49. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kawikova I, Askenase PW (2015) Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res 1617:63–71. https://doi.org/10.1016/j.brainres.2014.09.070

    Article  PubMed  CAS  Google Scholar 

  51. Guay C, Regazzi R (2017) Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 19(Suppl 1):137–146. https://doi.org/10.1111/dom.13027

    Article  PubMed  Google Scholar 

  52. Blandford SN, Galloway DA, Moore CS (2018) The roles of extracellular vesicle microRNAs in the central nervous system. Glia 66:2267–2278. https://doi.org/10.1002/glia.23445

    Article  PubMed  Google Scholar 

  53. Ferguson SW, Wang J, Lee CJ, Liu M, Neelamegham S, Canty JM, Nguyen J (2018) The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 8:1419. https://doi.org/10.1038/s41598-018-19581-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tan L, Wu H, Liu Y, Zhao M, Li D, Lu Q (2016) Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 49:357–365. https://doi.org/10.1080/08916934.2016.1191477

    Article  PubMed  CAS  Google Scholar 

  55. Ebrahimkhani S, Vafaee F, Young PE, Hur SSJ, Hawke S, Devenney E, Beadnall H, Barnett MH et al (2017) Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 7:14293. https://doi.org/10.1038/s41598-017-14301-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B (2017) Exosomes, an unmasked culprit in neurodegenerative diseases. Frontiers in Neuroscience 11:26. https://doi.org/10.3389/fnins.2017.00026

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tomasetti M, Lee W, Santarelli L, Neuzil J (2017) Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Experimental & Molecular Medicine 49:e285–e285. https://doi.org/10.1038/emm.2016.153

    Article  CAS  Google Scholar 

  58. Yan S, Zhang H, Xie W et al (2017) Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Oncotarget 8:4136–4146. https://doi.org/10.18632/oncotarget.13744

    Article  PubMed  Google Scholar 

  59. Long Q, Upadhya D, Hattiangady B, Kim DK, An SY, Shuai B, Prockop DJ, Shetty AK (2017) Intranasal MSC-derived A1-exosomes ease inflammation and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc Natl Acad Sci USA 114:E3536–E3545. https://doi.org/10.1073/pnas.1703920114

    Article  PubMed  CAS  Google Scholar 

  60. Upadhya D, Shetty AK (2019) Promise of extracellular vesicles for diagnosis and treatment of epilepsy. Epilepsy Behav, in press https://doi.org/10.1016/j.yebeh.2019.106499

  61. Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res 31:73–84

    Article  CAS  Google Scholar 

  62. Bertoglio D, Amhaoul H, Van Eetveldt A et al (2017) Kainic acid-induced post-status epilepticus models of temporal lobe epilepsy with diverging seizure phenotype and neuropathology. Front Neurol 8:588. https://doi.org/10.3389/fneur.2017.00588

    Article  PubMed  PubMed Central  Google Scholar 

  63. Upadhya D, Kodali M, Gitai D, Castro OW, Zanirati G, Upadhya R, Attaluri S, Mitra E, Shuai B, Hattiangady B, Shetty AK (2019) A model of temporal lobe epilepsy presenting constantly rhythmic and robust spontaneous seizures, co-morbidities and hippocampal neuropathology. Aging and Dis, in press.

  64. Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294

    Article  CAS  Google Scholar 

  65. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7:789–804. https://doi.org/10.7150/thno.18133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Vella LJ, Scicluna BJ, Cheng L, Bawden EG, Masters CL, Ang CS, Willamson N, McLean C et al (2017) A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles 6:1348885. https://doi.org/10.1080/20013078.2017.1348885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Madhu LN, Attaluri S, Kodali M et al (2019) Neuroinflammation in Gulf War Illness is linked with HMGB1 and complement activation, which can be discerned from brain-derived extracellular vesicles in the blood. Brain Behav Immun 81:430-443 https://doi.org/10.1016/j.bbi.2019.06.040

    Article  CAS  Google Scholar 

  68. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  69. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43:W460–W466. https://doi.org/10.1093/nar/gkv403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K et al (2000) Gene ontology: tool for the unification of biology. Nature Genetics 25:25–29

    Article  CAS  Google Scholar 

  71. Kanehisa M (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27–30

    Article  CAS  Google Scholar 

  72. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070

    Article  PubMed  CAS  Google Scholar 

  73. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, p3thways, diseases and drugs. Nucleic Acids Res 45:D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  PubMed  CAS  Google Scholar 

  74. The Gene Ontology Consortium, The Gene Ontology Consortium (2017) Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Research 45:D331–D338. https://doi.org/10.1093/nar/gkw1108

    Article  CAS  Google Scholar 

  75. Bleazard T, Lamb JA, Griffiths-Jones S (2015) Bias in microRNA functional enrichment analysis. Bioinformatics 31:1592–1598. https://doi.org/10.1093/bioinformatics/btv023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Nakamura N (2010) Emerging new roles of GM130, a cis-Golgi matrix protein, in higher order cell functions. J Pharmacol Sci 112:255–264

    Article  CAS  Google Scholar 

  77. Lötvall J, Hill AF, Hochberg F, Buzás EI, di Vizio D, Gardiner C, Gho YS, Kurochkin IV et al (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. https://doi.org/10.3402/jev.v3.26913

    Article  PubMed  Google Scholar 

  78. Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, Yin F (2013) Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 51:950–958. https://doi.org/10.1007/s12031-013-0013-9

    Article  PubMed  CAS  Google Scholar 

  79. Henshall DC (2013) Antagomirs and microRNA in status epilepticus. Epilepsia 54(Suppl 6):17–19. https://doi.org/10.1111/epi.12267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Henshall DC (2013) MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci 6:37. https://doi.org/10.3389/fnmol.2013.00037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Marques TEBS, de Mendonça LR, Pereira MG, de Andrade TG, Garcia-Cairasco N, Paçó-Larson ML, Gitaí DL (2013) Validation of suitable reference genes for expression studies in different pilocarpine-induced models of mesial temporal lobe epilepsy. PLoS One 8:e71892. https://doi.org/10.1371/journal.pone.0071892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. de Araújo MA, Marques TEBS, Taniele-Silva J, Souza FM, de Andrade TG, Garcia-Cairasco N, Paçó-Larson ML, Gitaí DL (2014) Identification of endogenous reference genes for the analysis of microRNA expression in the hippocampus of the pilocarpine-induced model of mesial temporal lobe epilepsy. PLoS One 9:e100529. https://doi.org/10.1371/journal.pone.0100529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. da Silva Santos EA, TEBS M, de Carvalho Matos H et al (2015) Diurnal variation has effect on differential gene expression analysis in the hippocampus of the pilocarpine-induced model of mesial temporal lobe epilepsy. PLoS One 10:e0141121. https://doi.org/10.1371/journal.pone.0141121

    Article  CAS  Google Scholar 

  84. Born JPL, Matos CH, de Araujo MA et al (2017) Using postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process. PLoS One 12:e0182765. https://doi.org/10.1371/journal.pone.0182765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Brindley E, Hill TDM, Henshall DC (2019) MicroRNAs as biomarkers and treatment targets in status epilepticus. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2019.04.025

    Article  Google Scholar 

  86. Schouten M, Fratantoni SA, Hubens CJ, Piersma SR, Pham TV, Bielefeld P, Voskuyl RA, Lucassen PJ et al (2015) MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells. Sci Rep 5:12448. https://doi.org/10.1038/srep12448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kretschmann A, Danis B, Andonovic L, Abnaof K, van Rikxoort M, Siegel F, Mazzuferi M, Godard P et al (2015) Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci 55:466–479. https://doi.org/10.1007/s12031-014-0368-6

    Article  PubMed  CAS  Google Scholar 

  88. Lim JS, Kim W-I, Kang H-C, Kim SH, Park AH, Park EK, Cho YW, Kim S et al (2015) Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med 21:395–400. https://doi.org/10.1038/nm.3824

    Article  PubMed  CAS  Google Scholar 

  89. Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42:8–12

    Article  Google Scholar 

  90. Meng X-F, Yu J-T, Song J-H, Chi S, Tan L (2013) Role of the mTOR signaling pathway in epilepsy. J Neurol Sci 332:4–15. https://doi.org/10.1016/j.jns.2013.05.029

    Article  PubMed  CAS  Google Scholar 

  91. Baulac S (2016) mTOR signaling pathway genes in focal epilepsies. Prog Brain Res 226:61–79. https://doi.org/10.1016/bs.pbr.2016.04.013

    Article  PubMed  CAS  Google Scholar 

  92. Van Zandt MA, Naegele JR (2017) GABAergic synapse dysfunction and repair in temporal lobe epilepsy. In: Heinbockel T (ed) Synaptic plasticity. InTech. https://doi.org/10.5772/67218

    Google Scholar 

  93. Gorlewicz A, Kaczmarek L (2018) Pathophysiology of trans-synaptic adhesion molecules: implications for epilepsy. Frontiers in Cell and Developmental Biology 6:119. https://doi.org/10.3389/fcell.2018.00119

    Article  PubMed  PubMed Central  Google Scholar 

  94. Somera-Molina KC, Robin B, Somera CA, Anderson C, Stine C, Koh S, Behanna HA, van Eldik L et al (2007) Glial activation links early-life seizures and long-term neurologic dysfunction: evidence using a small molecule inhibitor of proinflammatory cytokine upregulation. Epilepsia 48:1785–1800. https://doi.org/10.1111/j.1528-1167.2007.01135.x

    Article  PubMed  CAS  Google Scholar 

  95. Yang L, Li F, Ge W, Mi C, Wang R, Sun R (2010) Protective effects of naloxone in two-hit seizure model. Epilepsia 51:344–353. https://doi.org/10.1111/j.1528-1167.2009.02250.x

    Article  PubMed  CAS  Google Scholar 

  96. Feng S, Ma S, Jia C, Su Y, Yang S, Zhou K, Liu Y, Cheng J et al (2016) Sonic hedgehog is a regulator of extracellular glutamate levels and epilepsy. EMBO Rep 17:682–694. https://doi.org/10.15252/embr.201541569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Dubey D, McRae PA, Rankin-Gee EK, Baranov E, Wandrey L, Rogers S, Porter BE (2017) Increased metalloproteinase activity in the hippocampus following status epilepticus. Epilepsy Res 132:50–58. https://doi.org/10.1016/j.eplepsyres.2017.02.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lai K, Kaspar BK, Gage FH, Schaffer DV (2003) Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 6:21–27. https://doi.org/10.1038/nn983

    Article  PubMed  CAS  Google Scholar 

  99. Hester MS, Danzer SC (2013) Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J Neurosci 33:8926–8936. https://doi.org/10.1523/JNEUROSCI.5161-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Yao PJ, Petralia RS, Mattson MP (2016) Sonic hedgehog signaling and hippocampal neuroplasticity. Trends Neurosci 39:840–850. https://doi.org/10.1016/j.tins.2016.10.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ikonomidou C (2014) Matrix metalloproteinases and epileptogenesis. Mol Cell Pediatr 1:6. https://doi.org/10.1186/s40348-014-0006-y

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rempe RG, Hartz AMS, Bauer B (2016) Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab 36:1481–1507. https://doi.org/10.1177/0271678X16655551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sakatani S, Seto-Ohshima A, Shinohara Y, Yamamoto Y, Yamamoto H, Itohara S, Hirase H (2008) Neural-activity-dependent release of S100B from astrocytes enhances kainate-induced gamma oscillations in vivo. J Neurosci 28:10928–10936. https://doi.org/10.1523/JNEUROSCI.3693-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I, Donato R (2010) (2010) The many faces of S100B protein: when an extracellular factor inactivates its own receptor and activates another one. Ital J Anat Embryol. 115(1-2):147–151

    PubMed  Google Scholar 

  105. Lu C, Li J, Sun W, Feng L, Li L, Liu A, Li J, Mao W et al (2010) Elevated plasma S100B concentration is associated with mesial temporal lobe epilepsy in Han Chinese: a case–control study. Neurosci Lett 484:139–142. https://doi.org/10.1016/j.neulet.2010.08.036

    Article  PubMed  CAS  Google Scholar 

  106. Calik M, Abuhandan M, Sonmezler A, Kandemır H, Oz I, Taskin A, Selek S, Iscan A (2013) Elevated serum S-100B levels in children with temporal lobe epilepsy. Seizure 22:99–102. https://doi.org/10.1016/j.seizure.2012.10.012

    Article  PubMed  Google Scholar 

  107. Meguid NA, Samir H, Bjørklund G, Anwar M, Hashish A, Koura F, Chirumbolo S, Hashem S et al (2018) Altered S100 calcium-binding protein B and matrix metallopeptidase 9 as biomarkers of mesial temporal lobe epilepsy with hippocampus sclerosis. J Mol Neurosci 66:482–491. https://doi.org/10.1007/s12031-018-1164-5

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Department of Defense (W81XWH-14-1-0558 to A.K.S.), the State of Texas (Emerging Technology Fund to A.K.S.), and the Department of Veterans Affairs (Merit Award I01BX000883 and BLR&D Research Career Scientist award 1IK6BX003612 to A.K.S.). Daniel Gitai was supported by a Visiting Scientist Award from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Government of Brazil (D.L.G. Gitai).

Author information

Authors and Affiliations

Authors

Contributions

Conception: DLGG and AKS; research design: DLGG, RU, MK, and AKS; collection of data: DLGG, YDRS, RU, MK, and LNM; data analyses and interpretation: DLGG, YDRS, and AKS; preparation of figures: DLGG, YDRS, LNM, and AKS; manuscript writing: DLGG and AKS.

Corresponding authors

Correspondence to Daniel Leite Góes Gitaí or Ashok K. Shetty.

Ethics declarations

The Animal Care and Use Committee of the Texas A&M University approved all animal experiments performed in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitaí, D.L.G., dos Santos, Y.D.R., Upadhya, R. et al. Extracellular Vesicles in the Forebrain Display Reduced miR-346 and miR-331-3p in a Rat Model of Chronic Temporal Lobe Epilepsy. Mol Neurobiol 57, 1674–1687 (2020). https://doi.org/10.1007/s12035-019-01797-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01797-1

Keywords

Navigation