Skip to main content

Advertisement

Log in

Calcium/Calmodulin-Dependent Kinase (CaMKII) Inhibition Protects Against Purkinje Cell Damage Following CA/CPR in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic brain damage is triggered by glutamate excitotoxicity resulting in neuronal cell death. Previous research has demonstrated that N-methly-d-aspartate (NMDA) receptor activation triggers downstream calcium-dependent signaling pathways, specifically Ca2+/calmodulin-dependent protein kinase II (CaMKII). Inhibiting CaMKII is protective against hippocampal ischemic injury, but there is little known about its role in the cerebellum. To examine the neuroprotective potential of CaMKII inhibition in Purkinje cells, we subjected C57BL/6 or CaMKIIα KO male mice (8–12 weeks old) to cardiac arrest followed by cardiopulmonary resuscitation (CA/CPR). We performed a dose-response study for tat-CN19o and cerebellar injury was analyzed at 7 days after CA/CPR. Acute signaling was assessed at 6 h after CA/CPR using Western blot analysis. We observed increased phosphorylation of the T286 residue of CaMKII, suggesting increased autonomous activation. Analysis of Purkinje cell density revealed a decrease in cell density at 7 days after CA/CPR that was prevented with tat-CN19o at doses of 0.1 and 1 mg/kg. However, neuroprotection in the cerebellum required doses that were 10-fold higher than what was needed in the hippocampus. CaMKIIα KO mice subjected to sham surgery or CA/CPR had similar Purkinje cell densities, suggesting CaMKIIα is required for CA/CPR-induced injury in the cerebellum. We also observed a CA/CPR-induced activation of death-associated protein kinase (DAPK1) that tat-CN19o did not block. In summary, our findings indicate that inhibition of autonomous CaMKII activity is a promising therapeutic approach that is effective across multiple brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137(12):e67–e492

    PubMed  Google Scholar 

  2. Buanes EA, Gramstad A, Søvig KK, Hufthammer KO, Flaatten H, Husby T, Langørgen J, Heltne JK (2015) Cognitive function and health-related quality of life four years after cardiac arrest. Resuscitation 89:13–18

    PubMed  Google Scholar 

  3. Khot S, Tirschwell DL (2006) Long-term neurological complications after hypoxic-ischemic encephalopathy. Semin Neurol 26(4):422–431

    PubMed  Google Scholar 

  4. Venkatesan A, Frucht S (2006) Movement disorders after resuscitation from cardiac arrest. Neurol Clin 24(1):123–132

    PubMed  Google Scholar 

  5. Bunch TJ, White RD, Smith GE, Hodge DO, Gersh BJ, Hammill SC, Shen WK, Packer DL (2004) Long-term subjective memory function in ventricular fibrillation out-of-hospital cardiac arrest survivors resuscitated by early defibrillation. Resuscitation 60(2):189–195

    PubMed  Google Scholar 

  6. Lim C, Verfaellie M, Schnyer D, Lafleche G, Alexander MP (2014) Recovery, long-term cognitive outcome and quality of life following out-of-hospital cardiac arrest. J Rehabil Med 46(7):691–697

    PubMed  Google Scholar 

  7. Madl C, Holzer M (2004) Brain function after resuscitation from cardiac arrest. Curr Opin Crit Care 10(3):213–217

    PubMed  Google Scholar 

  8. Deng G, Orfila JE, Dietz RM, Moreno-Garcia M, Rodgers KM, Coultrap SJ, Quillinan N, Traystman RJ et al (2017) Autonomous CaMKII activity as a drug target for histological and functional neuroprotection after resuscitation from cardiac arrest. Cell Rep 18(5):1109–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cronberg T, Lilja G, Horn J, Kjaergaard J, Wise MP, Pellis T, Hovdenes J, Gasche Y et al (2015) Neurologic function and health-related quality of life in patients following targeted temperature management at 33 degrees C vs 36 degrees C after out-of-hospital cardiac arrest: a randomized clinical trial. JAMA Neurol 72(6):634–641

    PubMed  Google Scholar 

  10. Lilja G, Nielsen N, Friberg H, Horn J, Kjaergaard J, Nilsson F, Pellis T, Wetterslev J et al (2015) Cognitive function in survivors of out-of-hospital cardiac arrest after target temperature management at 33 degrees C versus 36 degrees C. Circulation 131(15):1340–1349

    PubMed  Google Scholar 

  11. Dell’anna AM, Scolletta S, Donadello K, Taccone FS (2014) Early neuroprotection after cardiac arrest. Curr Opin Crit Care 20(3):250–258

    PubMed  Google Scholar 

  12. Hypothermia after Cardiac Arrest Study G (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346(8):549–556

    Google Scholar 

  13. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346(8):557–563

    PubMed  Google Scholar 

  14. Arrich J, Holzer M, Herkner H, Mullner M (2009) Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev 4:CD004128

    Google Scholar 

  15. Ng T, Graham DI, Adams JH, Ford I (1989) Changes in the hippocampus and the cerebellum resulting from hypoxic insults: frequency and distribution. Acta Neuropathol 78(4):438–443

    CAS  PubMed  Google Scholar 

  16. Kofler J, Hattori K, Sawada M, DeVries A, Martin L, Hurn P et al (2004) Histopathological and behavioral characterization of a novel model of cardiac arrest and cardiopulmonary resuscitation in mice. J Neurosci Methods 136(1):33–44

    PubMed  Google Scholar 

  17. Horn M, Schlote W (1992) Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol 85:79–87

    CAS  PubMed  Google Scholar 

  18. Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46(4):281–309

    CAS  PubMed  Google Scholar 

  19. Sato M, Hashimoto H, Kosaka F (1990) Histological changes of neuronal damage in vegetative dogs induced by 18 minutes of complete global brain ischemia: two-phase damage of Purkinje cells and hippocampal CA1 pyramidal cells. Acta Neuropathol 80(5):527–534

    CAS  PubMed  Google Scholar 

  20. Martin LJ, Sieber FE, Traystman RJ (2000) Apoptosis and necrosis occur in separate neuronal populations in hippocampus and cerebellum after ischemia and are associated with differential alterations in metabotropic glutamate receptor signaling pathways. J Cereb Blood Flow Metab 20(1):153–167

    CAS  PubMed  Google Scholar 

  21. Globus MY, Busto R, Martinez E, Valdes I, Dietrich WD, Ginsberg MD (1991) Comparative effect of transient global ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and nonvulnerable brain regions in the rat. J Neurochem 57(2):470–478

    CAS  PubMed  Google Scholar 

  22. Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55(3):289–309

    CAS  PubMed  Google Scholar 

  23. Gilbert PF, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128(2):309–328

    CAS  PubMed  Google Scholar 

  24. Llinás R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3(6):958–965

    PubMed  Google Scholar 

  25. Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16(6):645–649

    CAS  PubMed  Google Scholar 

  26. Thach WT (1998) A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 70(1–2):177–188

    CAS  PubMed  Google Scholar 

  27. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1(6):383–386

    CAS  PubMed  Google Scholar 

  28. Lynch DR, Guttmann RP (2002) Excitotoxicity: perspectives based on N-methyl-D-aspartate receptor subtypes. J Pharmacol Exp Ther 300(3):717–723

    CAS  PubMed  Google Scholar 

  29. Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61(6):657–668

    CAS  PubMed  Google Scholar 

  30. Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47(2):122–129

    CAS  PubMed  Google Scholar 

  31. Quillinan N, Grewal H, Deng G, Shimizu K, Yonchek JC, Strnad F, Traystman RJ, Herson PS (2015) Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia. Neuroscience 284:555–565

    CAS  PubMed  Google Scholar 

  32. Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, Lee H, Craig AM et al (2012) Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci 32(12):3992–4003

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bayer KU, Schulman H (2019 (in press)) CaM kinase: still intriguing at 40. Neuron 103:380–394

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000) Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405(6789):955–959

    CAS  PubMed  Google Scholar 

  35. Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48(2):289–301

    CAS  PubMed  Google Scholar 

  36. Buard I, Coultrap SJ, Freund RK, Lee YS, Dell’Acqua ML, Silva AJ, Bayer KU (2010) CaMKII “autonomy” is required for initiating but not for maintaining neuronal long-term information storage. J Neurosci 30(24):8214–8220

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lucchesi W, Mizuno K, Giese KP (2011) Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull 85(1–2):2–8

    CAS  PubMed  Google Scholar 

  38. Coultrap SJ, Bayer KU (2011) Improving a natural CaMKII inhibitor by random and rational design. PLoS One 6(10):e25245

    CAS  PubMed  PubMed Central  Google Scholar 

  39. van Woerden GM, Hoebeek FE, Gao Z, Nagaraja RY, Hoogenraad CC, Kushner SA, Hansel C, de Zeeuw CI et al (2009) betaCaMKII controls the direction of plasticity at parallel fiber-Purkinje cell synapses. Nat Neurosci 12(7):823–825

    PubMed  Google Scholar 

  40. Wang X, Zhang C, Szabo G, Sun QQ (2013) Distribution of CaMKIIalpha expression in the brain in vivo, studied by CaMKIIalpha-GFP mice. Brain Res 1518:9–25

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nagasaki N, Hirano T, Kawaguchi SY (2014) Opposite regulation of inhibitory synaptic plasticity by alpha and beta subunits of Ca(2+)/calmodulin-dependent protein kinase II. J Physiol 592(22):4891–4909

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nair S, Hagberg H, Krishnamurthy R, Thornton C, Mallard C (2013) Death associated protein kinases: molecular structure and brain injury. Int J Mol Sci 14(7):13858–13872

    PubMed  PubMed Central  Google Scholar 

  43. Hutchens MP, Traystman RJ, Fujiyoshi T, Nakayama S, and Herson PS (2011) Normothermic cardiac arrest and cardiopulmonary resuscitation: a mouse model of ischemia-reperfusion injury. J Vis Exp (54)

  44. Hell JW (2014) CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81(2):249–265

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hansel C, Jeu M, Belmeguenai A, Houtman SH, Buitendijk GS, Andreev D et al (2006) αCaMKII is essential for cerebellar LTD and motor learning. Neuron 51(6):835–843

    CAS  PubMed  Google Scholar 

  46. Coultrap SJ, Vest RS, Ashpole NM, Hudmon A, Bayer KU (2011) CaMKII in cerebral ischemia. Acta Pharmacol Sin 32(7):861–872

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Takano H, Fukushi H, Morishima Y, Shirasaki Y (2003) Calmodulin and calmodulin-dependent kinase II mediate neuronal cell death induced by depolarization. Brain Res 962(1–2):41–47

    CAS  PubMed  Google Scholar 

  48. Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48(4):635–646

    CAS  PubMed  Google Scholar 

  49. Gurd JW, Rawof S, Zhen Huo J, Dykstra C, Bissoon N, Teves L, Wallace MC, Rostas JAP (2008) Ischemia and status epilepitcus result in enhanced phosphorylation of calcium and calmodulin-stimulated protein kinase II on threonine 253. Brain Res 1218:158–165

    CAS  PubMed  Google Scholar 

  50. Ahmed ME, Dong Y, Lu Y, Tucker D, Wang R, Zhang Q (2017) Beneficial effects of a CaMKIIalpha inhibitor TatCN21 peptide in global cerebral ischemia. J Mol Neurosci 61(1):42–51

    CAS  PubMed  Google Scholar 

  51. Rostas JA, Hoffman A, Murtha LA, Pepperall D, McLeod DD, Dickson PW et al (2017) Ischaemia- and excitotoxicity-induced CaMKII-mediated neuronal cell death: the relative roles of CaMKII autophosphorylation at T286 and T253. Neurochem Int 104:6–10

    CAS  PubMed  Google Scholar 

  52. Ashpole NM, Song W, Brustovetsky T, Engleman EA, Brustovetsky N, Cummins TR, Hudmon A (2012) Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling and hyperexcitability. J Biol Chem 287(11):8495–8506

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D (2005) Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem 280(51):42290–42299

    CAS  PubMed  Google Scholar 

  54. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarap MM et al (2010) DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 140(2):222–234

    CAS  PubMed  PubMed Central  Google Scholar 

  55. He C, Stroink AR, Wang CX (2014) The role of DAPK-BimEL pathway in neuronal death induced by oxygen-glucose deprivation. Neuroscience 258:254–262

    CAS  PubMed  Google Scholar 

  56. Fujita Y, Yamashita T (2014) Role of DAPK in neuronal cell death. Apoptosis 19(2):339–345

    CAS  PubMed  Google Scholar 

  57. Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C et al (2014) DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci 34(19):6546–6556

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Meng F, Guo J, Zhang Q, Song B, Zhang G (2003) Autophosphorylated calcium/calmodulin-dependent protein kinase II alpha (CaMKII alpha) reversibly targets to and phosphorylates N-methyl-D-aspartate receptor subunit 2B (NR2B) in cerebral ischemia and reperfusion in hippocampus of rats. Brain Res 967(1–2):161–169

    CAS  PubMed  Google Scholar 

  59. Jiang H, Fang J, Xing J, Wang L, Wang Q, Wang Y, Li Z, Liu R (2019) Tilianin mediates neuroprotection against ischemic injury by attenuating CaMKII-dependent mitochondrion-mediated apoptosis and MAPK/NF-kappaB signaling. Life Sci 216:233–245

    CAS  PubMed  Google Scholar 

  60. Lu Q, Harris VA, Sun X, Hou Y, Black SM (2013) Ca(2)(+)/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS One 8(8):e70750

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH (2005) Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J 24(2):294–304

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NINDS K01 NS086969 (NQ), NINDS R01 NS080851 (PSH, UB) and Gates Summer Internship Program (MR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidia Quillinan.

Ethics declarations

All experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Colorado, School of Medicine, and were performed according to the guidelines from the National Institutes of Health.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalmers, N.E., Yonchek, J., Steklac, K.E. et al. Calcium/Calmodulin-Dependent Kinase (CaMKII) Inhibition Protects Against Purkinje Cell Damage Following CA/CPR in Mice. Mol Neurobiol 57, 150–158 (2020). https://doi.org/10.1007/s12035-019-01765-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01765-9

Keywords

Navigation