Skip to main content
Log in

Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms, such as alterations in histone acetylation based on histone deacetylases (HDACs) activity, have been linked not only to normal brain function but also to several brain disorders including epilepsy and the epileptogenic process. In WAG/Rij rats, a genetic model of absence epilepsy, epileptogenesis and mild-depression comorbidity, we investigated the effects of two HDAC inhibitors (HDACi), namely sodium butyrate (NaB), valproic acid (VPA) and their co-administration, on the development of absence seizures and related psychiatric/neurologic comorbidities following two different experimental paradigms. Treatment effects have been evaluated by EEG recordings (EEG) and behavioural tests at different time points. Prolonged and daily VPA and NaB treatment, started before absence seizure onset (P30), significantly reduced the development of absence epilepsy showing antiepileptogenic effects. These effects were enhanced by NaB/VPA co-administration. Furthermore, early-chronic HDACi treatment improved depressive-like behaviour and cognitive performance 1 month after treatment withdrawal. WAG/Rij rats of 7 months of age showed reduced acetylated levels of histone H3 and H4, analysed by Western Blotting of homogenized brain, in comparison to WAG/Rij before seizure onset (P30). The brain histone acetylation increased significantly during treatment with NaB or VPA alone and more markedly during co-administration. We also observed decreased expression of both HDAC1 and 3 following HDACi treatment compared to control group. Our results suggest that histone modifications may have a crucial role in the development of epilepsy and early treatment with HDACi might be a possible strategy for preventing epileptogenesis also affecting behavioural comorbidities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mulaf M (2016) The pharmacological management of psychiatric comorbidities in patients with epilepsy. Pharmacol Res 107:147–153. https://doi.org/10.1016/j.phrs.2016.03.022

    Article  CAS  Google Scholar 

  2. Scott AJ, Sharpe L, Hunt C, Gandy M (2017) Anxiety and depressive disorders in people with epilepsy: a meta-analysis. Epilepsia 58:973–982. https://doi.org/10.1111/epi.13769

    Article  PubMed  Google Scholar 

  3. Cornaggia CM, Beghi M, Provenzi M, Beghi E (2006) Correlation between cognition and behavior in epilepsy. Epilepsia 47:34–39. https://doi.org/10.1111/j.1528-1167.2006.00685.x

    Article  PubMed  Google Scholar 

  4. Lin JJ, Mula M, Hermann BP (2012) Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet 380:1180–1192. https://doi.org/10.1016/S0140-6736(12)61455-X

    Article  PubMed  Google Scholar 

  5. Brooks-Kayal AR, Bath KG, Berg AT, Galanopoulou AS, Holmes GL, Jensen FE, Kanner AM, O’Brien TJ et al (2013) Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 54:44–60. https://doi.org/10.1111/epi.12298

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jacobs MP, Leblanc GG, Brooks-Kayal A, Jensen FE, Lowenstein DH, Noebels JL, Spencer DD, Swann JW (2009) Curing epilepsy: progress and future directions. Epilepsy Behav 14:438–445. https://doi.org/10.1016/j.yebeh.2009.02.036

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kobow K, Blümcke I (2018) Epigenetics in epilepsy. Neurosci Lett 667:40–46. https://doi.org/10.1016/j.neulet.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  8. Karalambev B (1962) A rare case of a foreign body of the fornix. Khirurgiia (Sofiia) 15:653–654. https://doi.org/10.1016/j.nbd.2010.02.005

    Article  CAS  Google Scholar 

  9. Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science (80-) 328:753–756. https://doi.org/10.1126/science.1186088

    Article  CAS  Google Scholar 

  10. Younus I, Reddy DS (2017) Epigenetic interventions for epileptogenesis: a new frontier for curing epilepsy. Pharmacol Ther 177:108–122. https://doi.org/10.1016/j.pharmthera.2017.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100. https://doi.org/10.1146/annurev.biochem.76.052705.162114

    Article  CAS  PubMed  Google Scholar 

  12. de Ruijter AJM, van Gennip AH, Caron HN et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749. https://doi.org/10.1042/bj20021321

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qiu X, Xiao X, Li N, Li Y (2017) Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychopharmacol Biol Psychiatry 72:60–72. https://doi.org/10.1016/j.pnpbp.2016.09.002

    Article  CAS  Google Scholar 

  14. Penney J, Tsai L-H (2014) Histone deacetylases in memory and cognition. Sci Signal 7:re12. https://doi.org/10.1126/scisignal.aaa0069

    Article  CAS  PubMed  Google Scholar 

  15. Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R (2015) Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 9:58. https://doi.org/10.3389/fncel.2015.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crosio C (2003) Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 116:4905–4914. https://doi.org/10.1242/jcs.00804

    Article  CAS  PubMed  Google Scholar 

  17. Taniura H, Sng JCG, Yoneda Y (2006) Histone modifications in status epilepticus induced by kainate. Histol Histopathol 21:785–791. https://doi.org/10.1111/j.1460-9568.2006.04641.x

    Article  CAS  PubMed  Google Scholar 

  18. Mori T, Wakabayashi T, Ogawa H, Hirahara Y, Koike T, Yamada H (2013) Increased histone H3 phosphorylation in neurons in specific brain structures after induction of status epilepticus in mice. PLoS One 8:e77710. https://doi.org/10.1371/journal.pone.0077710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Doherty JJ, Dingledine R (2002) Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J Neurosci 22:8422–8428 22/19/8422

    Article  CAS  Google Scholar 

  20. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525. https://doi.org/10.1038/nn1659

    Article  CAS  PubMed  Google Scholar 

  21. Chuang DM, Leng Y, Marinova Z, Kim HJ, Chiu CT (2009) Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32:591–601. https://doi.org/10.1016/j.tins.2009.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64. https://doi.org/10.1016/j.coph.2007.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868. https://doi.org/10.1038/nrd2681

    Article  CAS  PubMed  Google Scholar 

  24. O’Connor SS, Jobes DA, Lineberry TW, Michael Bostwick J (2010) An investigation of emotional upset in suicide ideation. Arch Suicide Res 14:35–43. https://doi.org/10.1080/13811110903479029

    Article  PubMed  Google Scholar 

  25. Göttlicher M, Minucci S, Zhu P et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978. https://doi.org/10.1093/emboj/20.24.6969

    Article  PubMed  PubMed Central  Google Scholar 

  26. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741. https://doi.org/10.1074/jbc.M101287200

    Article  CAS  PubMed  Google Scholar 

  27. Reddy SD, Clossen BC, Reddy DS (2017) Epigenetic histone deacetylation inhibition prevents the development and persistence of temporal lobe epilepsy. J Pharmacol Exp Ther 364:jpet.117.244939. https://doi.org/10.1124/jpet.117.244939

    Article  CAS  Google Scholar 

  28. Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, de Sarro G (2016) Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 71:388–408. https://doi.org/10.1016/j.neubiorev.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  29. Russo E, Citraro R (2018) Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J Neurosci Methods 310:54–62. https://doi.org/10.1016/j.jneumeth.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  30. Sarkisova K, van Luijtelaar G (2011) The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35:854–876. https://doi.org/10.1016/j.pnpbp.2010.11.010

    Article  CAS  Google Scholar 

  31. Leo A, Citraro R, Amodio N, de Sarro C, Gallo Cantafio ME, Constanti A, de Sarro G, Russo E (2017) Fingolimod exerts only temporary antiepileptogenic effects but longer-lasting positive effects on behavior in the WAG/Rij rat absence epilepsy model. Neurotherapeutics 14:1134–1147. https://doi.org/10.1007/s13311-017-0550-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Citraro R, Leo A, Franco V, Marchiselli R, Perucca E, de Sarro G, Russo E (2017) Perampanel effects in the WAG/Rij rat model of epileptogenesis, absence epilepsy, and comorbid depressive-like behavior. Epilepsia 58:231–238. https://doi.org/10.1111/epi.13629

    Article  CAS  PubMed  Google Scholar 

  33. Jessberger S, Nakashima K, Clemenson GD, Mejia E, Mathews E, Ure K, Ogawa S, Sinton CM et al (2007) Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci 27:5967–5975. https://doi.org/10.1523/JNEUROSCI.0110-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deutsch SI, Rosse RB, Long KD, Gaskins BL, Burket JA, Mastropaolo J (2008) Sodium butyrate, an epigenetic interventional strategy, attenuates a stress-induced alteration of MK-801’s pharmacologic action. Eur Neuropsychopharmacol 18:565–568. https://doi.org/10.1016/j.euroneuro.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  35. Russo E, Citraro R, Scicchitano F, Urzino A, Marra R, Rispoli V, de Sarro G (2011) Vigabatrin has antiepileptogenic and antidepressant effects in an animal model of epilepsy and depression comorbidity. Behav Brain Res 225:373–376. https://doi.org/10.1016/j.bbr.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  36. Citraro R, Leo A, De Fazio P et al (2015) Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br J Pharmacol 172:3177–3188. https://doi.org/10.1111/bph.13121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarkisova KY, Kuznetsova GD, Kulikov MA, Van Luijtelaar G (2010) Spike-wave discharges are necessary for the expression of behavioral depression-like symptoms. Epilepsia 51:146–160. https://doi.org/10.1111/j.1528-1167.2009.02260.x

    Article  CAS  PubMed  Google Scholar 

  38. Russo E, Citraro R, Scicchitano F, de Fazio S, Perrota I, di Paola ED, Constanti A, de Sarro G (2011) Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia 52:1341–1350. https://doi.org/10.1111/j.1528-1167.2011.03112.x

    Article  CAS  PubMed  Google Scholar 

  39. Russo E, Citraro R, Davoli A, Gallelli L, Donato di Paola E, de Sarro G (2013) Ameliorating effects of aripiprazole on cognitive functions and depressive-like behavior in a genetic rat model of absence epilepsy and mild-depression comorbidity. Neuropharmacology 64:371–379. https://doi.org/10.1016/j.neuropharm.2012.06.039

    Article  CAS  PubMed  Google Scholar 

  40. Jafarian M, Karimzadeh F, Alipour F, Attari F, Lotfinia AA, Speckmann EJ, Zarrindast MR, Gorji A (2015) Cognitive impairments and neuronal injury in different brain regions of a genetic rat model of absence epilepsy. Neuroscience 298:161–170. https://doi.org/10.1016/j.neuroscience.2015.04.033

    Article  CAS  PubMed  Google Scholar 

  41. Amodio N, Stamato MA, Gullà AM, Morelli E, Romeo E, Raimondi L, Pitari MR, Ferrandino I et al (2016) Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol Cancer Ther 15:1364–1375. https://doi.org/10.1158/1535-7163.MCT-15-0985-T

    Article  CAS  PubMed  Google Scholar 

  42. Sarkisova KY, Gabova AV (2018) Maternal care exerts disease-modifying effects on genetic absence epilepsy and comorbid depression. Genes Brain Behav 17. https://doi.org/10.1111/gbb.12477

    Article  CAS  Google Scholar 

  43. Sitnikova E (2011) Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy. Brain Res 1377:109–118. https://doi.org/10.1016/j.brainres.2010.12.067

    Article  CAS  PubMed  Google Scholar 

  44. Hauser RM, Henshall DC, Lubin FD (2018) The epigenetics of epilepsy and its progression. Neuroscientist 24:186–200. https://doi.org/10.1177/1073858417705840

    Article  CAS  PubMed  Google Scholar 

  45. Citraro R, Leo A, Santoro M, D’agostino G, Constanti A, Russo E (2018) Role of histone deacetylases (HDACs) in epilepsy and epileptogenesis. Curr Pharm Des 23:5546–5562. https://doi.org/10.2174/1381612823666171024130001

    Article  CAS  Google Scholar 

  46. Brandt C, Gastens AM, Sun M z et al (2006) Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology 51:789–804. https://doi.org/10.1016/j.neuropharm.2006.05.021

    Article  CAS  PubMed  Google Scholar 

  47. Benardo LS (2003) Prevention of epilepsy after head trauma: do we need new drugs or a new approach? Epilepsia 44:27–33. https://doi.org/10.1046/j.1528-1157.44.s10.2.x

    Article  CAS  PubMed  Google Scholar 

  48. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23:9418–9427 23/28/9418

    Article  CAS  Google Scholar 

  49. Eleuteri S, Monti B, Brignani S, Contestabile A (2009) Chronic dietary administration of valproic acid protects neurons of the rat nucleus basalis magnocellularis from ibotenic acid neurotoxicity. Neurotox Res 15:127–132. https://doi.org/10.1007/s12640-009-9013-5

    Article  CAS  PubMed  Google Scholar 

  50. Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 65:35–43. https://doi.org/10.1016/j.neures.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  51. Clossen BL, Reddy DS (2017) Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol basis Dis 1863:1519–1538. https://doi.org/10.1016/j.bbadis.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  52. Pirozzi C, Lama A, Annunziata C, Cavaliere G, De Caro C, Citraro R, Russo E, Tallarico M, Iannone M, Mollica MP, Mattace Raso G, De Sarro G, Calignano A, Meli R (2019) Butyrate prevents valproate-induced liver injury: in vitro and in vivo evidence. FASEB J In Press

  53. Citraro R, Russo E, Ngomba RT, Nicoletti F, Scicchitano F, Whalley BJ, Calignano A, de Sarro G (2013) CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res 106:74–82. https://doi.org/10.1016/j.eplepsyres.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  54. Citraro R, Russo E, Gratteri S, di Paola ED, Ibbadu GF, Curinga C, Gitto R, Chimirri A et al (2006) Effects of non-competitive AMPA receptor antagonists injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy. Neuropharmacology 51:1058–1067. https://doi.org/10.1016/j.neuropharm.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  55. Dezsi G, Ozturk E, Stanic D, Powell KL, Blumenfeld H, O’Brien TJ, Jones NC (2013) Ethosuximide reduces epileptogenesis and behavioral comorbidity in the GAERS model of genetic generalized epilepsy. Epilepsia 54:635–643. https://doi.org/10.1111/epi.12118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karson A, Utkan T, Balci F et al (2012) Age-dependent decline in learning and memory performances of WAG/Rij rat model of absence epilepsy. Behav Brain Funct 8:51. https://doi.org/10.1186/1744-9081-8-51

    Article  PubMed  PubMed Central  Google Scholar 

  57. Saavedra K, Molina-Márquez AM, Saavedra N, Zambrano T, Salazar L (2016) Epigenetic modifications of major depressive disorder. Int J Mol Sci 17. https://doi.org/10.3390/ijms17081279

    Article  Google Scholar 

  58. Misztak P, Pańczyszyn-Trzewik P, Sowa-Kućma M (2018) Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep 70:398–408. https://doi.org/10.1016/j.pharep.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  59. Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK (2013) GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 38:2268–2277. https://doi.org/10.1038/npp.2013.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science (80-) 301:386–389. https://doi.org/10.1126/science.1083968

    Article  CAS  Google Scholar 

  61. Schroeder FA, Lin CL, Crusio WE, Akbarian S (2007) Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62:55–64. https://doi.org/10.1016/j.biopsych.2006.06.036

    Article  CAS  PubMed  Google Scholar 

  62. Gundersen BB, Blendy JA (2009) Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety. Neuropharmacology 57:67–74. https://doi.org/10.1016/j.neuropharm.2009.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Covington HE, Maze I, LaPlant QC et al (2009) Antidepressant actions of histone deacetylase inhibitors. J Neurosci 29:11451–11460. https://doi.org/10.1523/JNEUROSCI.1758-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han A, Bin SY, Chung SY, Kwon MS (2014) Possible additional antidepressant-like mechanism of sodium butyrate: Targeting the hippocampus. Neuropharmacology 81:292–302. https://doi.org/10.1016/j.neuropharm.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  65. Yamawaki Y, Yoshioka N, Nozaki K, Ito H, Oda K, Harada K, Shirawachi S, Asano S et al (2018) Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res 1680:13–38. https://doi.org/10.1016/j.brainres.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  66. Sun J, Wang F, Hong G, Pang M, Xu H, Li H, Tian F, Fang R et al (2016) Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 618:159–166. https://doi.org/10.1016/j.neulet.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  67. Zhao Y, Xing B, Dang YH, Qu CL, Zhu F, Yan CX (2013) Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation. PLoS One 8:e52698. https://doi.org/10.1371/journal.pone.0052698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu D, Qiu HM, Fei HZ, Hu XY, Xia HJ, Wang LJ, Qin LJ, Jiang XH et al (2014) Histone acetylation and expression of mono-aminergic transmitters synthetases involved in CUS-induced depressive rats. Exp Biol Med 239:330–336. https://doi.org/10.1177/1535370213513987

    Article  CAS  Google Scholar 

  69. Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31:605–617. https://doi.org/10.1016/j.tips.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  70. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D, Clark PO, Adamson PC et al (2013) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: initial monotherapy outcomes at 12 months. Epilepsia 54:141–155. https://doi.org/10.1111/epi.12028

    Article  CAS  PubMed  Google Scholar 

  71. Millichap JG (2015) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. Pediatr Neurol Briefs 24:19. https://doi.org/10.15844/pedneurbriefs-24-3-3

    Article  Google Scholar 

Download references

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Funding

This work was supported by the Italian Ministry of University and Research (MIUR), Prot N° 2015XSZ9A2. This work was partly supported by the Italian Ministry of Health, Grant N° GR-2013-02355028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Russo.

Ethics declarations

The experimental protocols and the procedures reported here were approved (authorization no. 509/2017-PR) by the Animal Care Committee of the University of Catanzaro, Italy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citraro, R., Leo, A., De Caro, C. et al. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol Neurobiol 57, 408–421 (2020). https://doi.org/10.1007/s12035-019-01712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01712-8

Keywords

Navigation