Skip to main content

Advertisement

Log in

N-acetylcysteine aggravates seizures while improving depressive-like and cognitive impairment comorbidities in the WAG/Rij rat model of absence epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract 

N-acetylcysteine (NAC) is an antioxidant with some demonstrated efficacy in a range of neuropsychiatric disorders. NAC has shown anticonvulsant effects in animal models. NAC effects on absence seizures are still not uncovered, and considering its clinical use as a mucolytic in patients with lung diseases, people with epilepsy are also likely to be exposed to the drug. Therefore, we aimed to study the effects of NAC on absence seizures in the WAG/Rij rat model of absence epilepsy with neuropsychiatric comorbidities. The effects of NAC chronic treatment in WAG/Rij rats were evaluated on: absence seizures at 15 and 30 days by EEG recordings and animal behaviour at 30 days on neuropsychiatric comorbidities. Furthermore, the mechanism of action of NAC was evaluated by analysing brain expression levels of some possible key targets: the excitatory amino acid transporter 2, cystine–glutamate antiporter, metabotropic glutamate receptor 2, the mechanistic target of rapamycin and p70S6K as well as levels of total glutathione. Our results demonstrate that in WAG/Rij rats, NAC treatment significantly increased the number and duration of SWDs, aggravating absence epilepsy while ameliorating neuropsychiatric comorbidities. NAC treatment was linked to an increase in brain mGlu2 receptor expression with this being likely responsible for the observed absence seizure-promoting effects. In conclusion, while confirming the positive effects on animal behaviour induced by NAC also in epileptic animals, we report the aggravating effects of NAC on absence seizures which could have some serious consequences for epilepsy patients with the possible wider use of NAC in clinical therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Dean O, Giorlando F, Berk M (2011) N-acetylcysteine in psychiatry: Current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 36:78–86

    Article  PubMed  PubMed Central  Google Scholar 

  2. Minarini A, Ferrari S, Galletti M et al (2017) N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects. Expert Opin Drug Metab Toxicol 13:279–292

    Article  CAS  PubMed  Google Scholar 

  3. Pocernich CB, La Fontaine M, Butterfield DA (2000) In-vivo glutathione elevation protects against hydroxyl free radical- induced protein oxidation in rat brain. Neurochem Int 36:185–191. https://doi.org/10.1016/S0197-0186(99)00126-6

    Article  CAS  PubMed  Google Scholar 

  4. Bavarsad Shahripour R, Harrigan MR, Alexandrov AV (2014) N-acetylcysteine (NAC) in neurological disorders: Mechanisms of action and therapeutic opportunities. Brain and Behavior 4:108–122. https://doi.org/10.1002/brb3.208

    Article  PubMed  PubMed Central  Google Scholar 

  5. Berk M, Malhi GS, Gray LJ, Dean OM (2013) The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 34:167–177

    Article  CAS  PubMed  Google Scholar 

  6. Pauletti A, Terrone G, Shekh-Ahmad T, et al (2019) Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 142.https://doi.org/10.1093/brain/awz130

  7. Deepmala SJ, Kumar N et al (2015) Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci Biobehav Rev 55:294–321

    Article  CAS  PubMed  Google Scholar 

  8. Fernandes BS, Dean OM, Dodd S et al (2016) N-acetylcysteine in depressive symptoms and functionality: A systematic review and meta-analysis. J Clin Psychiatry 77:e457–e466. https://doi.org/10.4088/JCP.15r09984

    Article  PubMed  Google Scholar 

  9. Smaga I, Pomierny B, Krzyzanowska W et al (2012) N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: Behavioral and biochemical analyses in rats. Prog Neuropsychopharmacol Biol Psychiatry 39:280–287. https://doi.org/10.1016/j.pnpbp.2012.06.018

    Article  CAS  PubMed  Google Scholar 

  10. Ferreira FF, Biojone C, Joca SRL, Guimarães FS (2008) Antidepressant-like effects of N-acetyl-L-cysteine in rats. Behav Pharmacol 19:747–750. https://doi.org/10.1097/FBP.0b013e3283123c98

    Article  CAS  PubMed  Google Scholar 

  11. Haber M, Abdel Baki SG, Grin’kina NM et al (2013) Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol 249:169–177. https://doi.org/10.1016/j.expneurol.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  12. Phensy A, Duzdabanian HE, Brewer S, et al (2017) Antioxidant treatment with N-acetyl cysteine prevents the development of cognitive and social behavioral deficits that result from perinatal ketamine treatment. Frontiers in Behavioral Neuroscience 11.https://doi.org/10.3389/fnbeh.2017.00106

  13. Hsiao YH, Kuo JR, Chen SH, Gean PW (2012) Amelioration of social isolation-triggered onset of early Alzheimer’s disease-related cognitive deficit by N-acetylcysteine in a transgenic mouse model. Neurobiol Dis 45:1111–1120. https://doi.org/10.1016/j.nbd.2011.12.031

    Article  CAS  PubMed  Google Scholar 

  14. Gulati K, Ray A, Pal G, Vijayan VK (2005) Possible role of free radicals in theophylline-induced seizures in mice. Pharmacol Biochem Behav 82:241–245. https://doi.org/10.1016/j.pbb.2005.06.019

    Article  CAS  PubMed  Google Scholar 

  15. Nomura S, Shimakawa S, Miyamoto R et al (2014) 3-Methyl-1-phenyl-2-pyrazolin-5-one or N-acetylcysteine prevents hippocampal mossy fiber sprouting and rectifies subsequent convulsive susceptibility in a rat model of kainic acid-induced seizure ceased by pentobarbital. Brain Res 1590:65–74. https://doi.org/10.1016/j.brainres.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  16. Zaeri S, Emamghoreishi M (2015) Acute and chronic effects of N-acetylcysteine on pentylenetetrazole-induced seizure and neuromuscular coordination in mice. Iranian J Med Sci 40:118–124

    Google Scholar 

  17. Uma Devi P, Kolappa Pillai K, Vohora D (2006) Modulation of pentylenetetrazole-induced seizures and oxidative stress parameters by sodium valproate in the absence and presence of N-acetylcysteine. Fundam Clin Pharmacol 20:247–253. https://doi.org/10.1111/j.1472-8206.2006.00401.x

    Article  CAS  PubMed  Google Scholar 

  18. Ben-Menachem E, Kyllerman M, Marklund S (2000) Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies. Epilepsy Res 40:33–39. https://doi.org/10.1016/S0920-1211(00)00096-6

    Article  CAS  PubMed  Google Scholar 

  19. Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15:459–472

    Article  CAS  PubMed  Google Scholar 

  20. Geronzi U, Lotti F, Grosso S (2018) Oxidative stress in epilepsy. Expert Rev Neurother 18:427–434. https://doi.org/10.1080/14737175.2018.1465410

    Article  CAS  PubMed  Google Scholar 

  21. Spencer S, Kalivas PW (2017) Glutamate transport: A new bench to bedside mechanism for treating drug abuse. Int J Neuropsychopharmacol 20:797–812. https://doi.org/10.1093/ijnp/pyx050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moussawi K, Pacchioni A, Moran M et al (2009) N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 12:182–189. https://doi.org/10.1038/nn.2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moran MM, McFarland K, Melendez RI et al (2005) Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 25:6389–6393. https://doi.org/10.1523/JNEUROSCI.1007-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  CAS  PubMed  Google Scholar 

  25. Russo E, Citraro R, Constanti A et al (2016) Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 71:388–408. https://doi.org/10.1016/j.neubiorev.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  26. Sarkisova K, van Luijtelaar G (2011) The WAG/Rij strain: A genetic animal model of absence epilepsy with comorbidity of depressiony. Prog Neuropsychopharmacol Biol Psychiatry 35:854–876. https://doi.org/10.1016/j.pnpbp.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  27. van Luijtelaar G, Zobeiri M, Lüttjohann A, Depaulis A (2017) Experimental Treatment Options in Absence Epilepsy. Curr Pharm Des 23:5577–5592. https://doi.org/10.2174/1381612823666171017170226

    Article  CAS  PubMed  Google Scholar 

  28. Ngomba RT, Santolini I, Salt TE et al (2011) Metabotropic glutamate receptors in the thalamocortical network: Strategic targets for the treatment of absence epilepsy. Epilepsia 52:1211–1222. https://doi.org/10.1111/j.1528-1167.2011.03082.x

    Article  CAS  PubMed  Google Scholar 

  29. D’Amore V, Von Randow C, Nicoletti F et al (2015) Anti-absence activity of mGlu1 and mGlu5 receptor enhancers and their interaction with a GABA reuptake inhibitor: Effect of local infusions in the somatosensory cortex and thalamus. Epilepsia 56:1141–1151. https://doi.org/10.1111/epi.13024

    Article  CAS  PubMed  Google Scholar 

  30. Ngomba RT, Biagioni F, Casciato S et al (2005) The preferential mGlu2/3 receptor antagonist, LY341495, reduces the frequency of spike-wave discharges in the WAG/Rij rat model of absence epilepsy. Neuropharmacology 49:89–103. https://doi.org/10.1016/j.neuropharm.2005.05.019

    Article  CAS  PubMed  Google Scholar 

  31. Leo A, De Caro C, Nesci V et al (2019) Antiepileptogenic effects of Ethosuximide and Levetiracetam in WAG/Rij rats are only temporary. Pharmacol Rep 71:833–838. https://doi.org/10.1016/j.pharep.2019.04.017

    Article  CAS  PubMed  Google Scholar 

  32. Citraro R, Leo A, Marra R et al (2015) Antiepileptogenic effects of the selective COX-2 inhibitor etoricoxib, on the development of spontaneous absence seizures in WAG/Rij rats. Brain Res Bull 113:1–7. https://doi.org/10.1016/j.brainresbull.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  33. Citraro R, Leo A, De Fazio P et al (2015) Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br J Pharmacol 172:3177–3188. https://doi.org/10.1111/bph.13121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Russo E, Citraro R, Scicchitano F et al (2010) Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy. Epilepsia 51:1560–1569. https://doi.org/10.1111/j.1528-1167.2009.02400.x

    Article  CAS  PubMed  Google Scholar 

  35. van Luijtelaar ELJM, Coenen AML (1986) Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci Lett 70:393–397. https://doi.org/10.1016/0304-3940(86)90586-0

    Article  PubMed  Google Scholar 

  36. Leo A, Citraro R, Tallarico M et al (2019) Cognitive impairment in the WAG/Rij rat absence model is secondary to absence seizures and depressive-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 94:109652. https://doi.org/10.1016/j.pnpbp.2019.109652

    Article  PubMed  Google Scholar 

  37. Leo A, Nesci V, Tallarico M et al (2020) IL-6 Receptor Blockade by Tocilizumab Has Anti-absence and Anti-epileptogenic Effects in the WAG/Rij Rat Model of Absence Epilepsy. Neurotherapeutics 17:2004–2014. https://doi.org/10.1007/s13311-020-00893-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leo A, Citraro R, Amodio N et al (2017) Fingolimod Exerts only Temporary Antiepileptogenic Effects but Longer-Lasting Positive Effects on Behavior in the WAG/Rij Rat Absence Epilepsy Model. Neurotherapeutics 14:1134–1147. https://doi.org/10.1007/s13311-017-0550-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Citraro R, Gallelli L, Leo A et al (2015) Effects of chronic sodium alendronate on depression and anxiety in a menopausal experimental model. Pharmacol Biochem Behav 129:65–71. https://doi.org/10.1016/j.pbb.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  40. Citraro R, Iannone M, Leo A et al (2019) Evaluation of the effects of liraglutide on the development of epilepsy and behavioural alterations in two animal models of epileptogenesis. Brain Res Bull 153:133–142. https://doi.org/10.1016/j.brainresbull.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  41. Citraro R, Leo A, De Caro C et al (2020) Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol Neurobiol 57:408–421. https://doi.org/10.1007/s12035-019-01712-8

    Article  CAS  PubMed  Google Scholar 

  42. Rispoli V, Ragusa S, Nisticò R et al (2013) Huperzine a restores cortico-hippocampal functional connectivity after bilateral ampa lesion of the nucleus basalis of meynert. Journal of Alzheimer’s Disease 35:833–846. https://doi.org/10.3233/JAD-130278

    Article  CAS  PubMed  Google Scholar 

  43. Nesci V, Russo E, Arcidiacono B et al (2020) Metabolic Alterations Predispose to Seizure Development in High-Fat Diet-Treated Mice: the Role of Metformin. Mol Neurobiol 57:4778–4789. https://doi.org/10.1007/s12035-020-02062-6

    Article  CAS  PubMed  Google Scholar 

  44. John JJ, Nagar DP, Gujar NL, Bhattacharya R (2019) Oxidative and histopathological alterations after sub-acute exposure of diisopropyl phosphorofluoridate in mice: Beneficial effect of N-acetylcysteine. Life Sci 228:98–111. https://doi.org/10.1016/j.lfs.2019.04.067

    Article  CAS  PubMed  Google Scholar 

  45. Devi PU, Pillai KK, Vohora D (2006) Facilitation action of N-acetylcysteine on the anticonvulsant effect of sodium valproate in mice. Basic Clin Pharmacol Toxicol 98:521–522. https://doi.org/10.1111/j.1742-7843.2006.pto_377.x

    Article  CAS  PubMed  Google Scholar 

  46. Russo E, Citraro R, Scicchitano F et al (2011) Effects of early long-term treatment with antiepileptic drugs on development of seizures and depressive-like behavior in a rat genetic absence epilepsy model. Epilepsia 52:1341–1350. https://doi.org/10.1111/j.1528-1167.2011.03112.x

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Zheng T, Morris MJ et al (2006) The mechanism of carbamazepine aggravation of absence seizures. J Pharmacol Exp Ther 319:790–798. https://doi.org/10.1124/JPET.106.104968

    Article  CAS  PubMed  Google Scholar 

  48. Pires NM, Bonifácio MJ, Soares-Da-Silva P (2015) Carbamazepine aggravates absence seizures in two dedicated mouse models. Pharmacological reports : PR 67:986–995. https://doi.org/10.1016/J.PHAREP.2015.03.007

    Article  CAS  PubMed  Google Scholar 

  49. Sarkisova KY, Kuznetsova GD, Kulikov MA, Van Luijtelaar G (2010) Spike-wave discharges are necessary for the expression of behavioral depression-like symptoms. Epilepsia 51:146–160. https://doi.org/10.1111/j.1528-1167.2009.02260.x

    Article  CAS  PubMed  Google Scholar 

  50. Russo E, Citraro R (2018) Pharmacology of epileptogenesis and related comorbidities in the WAG/Rij rat model of genetic absence epilepsy. J Neurosci Methods 310:54–62. https://doi.org/10.1016/j.jneumeth.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  51. Aygun H (2021) Exendin-4 increases absence-like seizures and anxiety–depression-like behaviors in WAG/Rij rats. Epilepsy Behav 123:108246. https://doi.org/10.1016/j.yebeh.2021.108246

    Article  PubMed  Google Scholar 

  52. Russo E, Citraro R, Donato G et al (2013) MTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 69:25–36. https://doi.org/10.1016/j.neuropharm.2012.09.019

    Article  CAS  PubMed  Google Scholar 

  53. Puttachary S, Sharma S, Stark S, Thippeswamy T (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. BioMed Res Int 2015

  54. Löscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123. https://doi.org/10.1016/S0920-1211(02)00073-6

    Article  PubMed  Google Scholar 

  55. Roganovic M, Pantovic S, Dizdarevic S (2019) Role of the oxidative stress in the pathogenesis of epilepsy. Neurol Sci Neurophysiol 36:1–8. https://doi.org/10.5152/NSN.2019.11632

    Article  Google Scholar 

  56. Rola R, Świader M, Czuczwar SJ (2002) Electroconvulsions elevate the levels of lipid peroxidation products in mice. Pol J Pharmacol 54:521–524

    CAS  PubMed  Google Scholar 

  57. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  CAS  PubMed  Google Scholar 

  58. Lin Y, Han Y, Xu J et al (2010) Mitochondrial DNA damage and the involvement of antioxidant defense and repair system in hippocampi of rats with chronic seizures. Cell Mol Neurobiol 30:947–954. https://doi.org/10.1007/s10571-010-9524-x

    Article  CAS  PubMed  Google Scholar 

  59. Waldbaum S, Liang LP, Patel M (2010) Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 115:1172–1182. https://doi.org/10.1111/j.1471-4159.2010.07013.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Michelucci R, Pasini E, Riguzzi P et al (2016) Myoclonus and seizures in progressive myoclonus epilepsies: pharmacology and therapeutic trials. Epileptic Disord 18:S145–S153. https://doi.org/10.1684/epd.2016.0861

    Article  Google Scholar 

  61. Hurd RW, Wilder BJ, Helveston WR, Uthman BM (1996) Treatment of four siblings with progressive myoclonus epilepsy of the Unverricht-Lundborg type with N-acetylcysteine. Neurology 47:1264–1268. https://doi.org/10.1212/WNL.47.5.1264

    Article  CAS  PubMed  Google Scholar 

  62. Edwards MJJ, Hargreaves IP, Heales SJR et al (2002) N-acetylcysteine and Unverricht-Lundborg disease: Variable response and possible side effects. Neurology 59:1447–1449. https://doi.org/10.1212/WNL.59.9.1447

    Article  CAS  PubMed  Google Scholar 

  63. Dechandt CRP, Ferrari GD, dos Santos JR, et al (2019) Energy Metabolism and Redox State in Brains of Wistar Audiogenic Rats, a Genetic Model of Epilepsy. Frontiers in Neurology 10.https://doi.org/10.3389/fneur.2019.01007

  64. Grosso S, Longini M, Rodriguez A et al (2011) Oxidative stress in children affected by epileptic encephalopathies. J Neurol Sci 300:103–106. https://doi.org/10.1016/j.jns.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  65. Abbott LC, Nejad HH, Bottje WG, Hassan AS (1990) Glutathione levels in specific brain regions of genetically epileptic (tg/tg) mice. Brain Res Bull 25:629–631. https://doi.org/10.1016/0361-9230(90)90124-I

    Article  CAS  PubMed  Google Scholar 

  66. Baker DA, Xi ZX, Shen H et al (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141. https://doi.org/10.1523/jneurosci.22-20-09134.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meeren HKM, Pijn JPM, Van Luijtelaar ELJM et al (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22:1480–1495. https://doi.org/10.1523/jneurosci.22-04-01480.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Russo E, Andreozzi F, Iuliano R et al (2014) Early molecular and behavioral response to lipopolysaccharide in the WAG/Rij rat model of absence epilepsy and depressive-like behavior, involves interplay between AMPK, AKT/mTOR pathways and neuroinflammatory cytokine release. Brain Behav Immun 42:157–168. https://doi.org/10.1016/j.bbi.2014.06.016

    Article  CAS  PubMed  Google Scholar 

  69. Russo E, Follesa P, Citraro R et al (2014) The mTOR signaling pathway and neuronal stem/progenitor cell proliferation in the hippocampus are altered during the development of absence epilepsy in a genetic animal model. Neurol Sci 35:1793–1799. https://doi.org/10.1007/s10072-014-1842-1

    Article  PubMed  Google Scholar 

  70. Ehninger D, de Vries PJ, Silva AJ (2009) From mTOR to cognition: Molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis. J Intellect Disabil Res 53:838–851. https://doi.org/10.1111/j.1365-2788.2009.01208.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abelaira HM, Réus GZ, Neotti MV, Quevedo J (2014) The role of mTOR in depression and antidepressant responses. Life Sci 101:10–14. https://doi.org/10.1016/j.lfs.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  72. Yang L, Tan P, Zhou W et al (2012) N-acetylcysteine protects against hypoxia mimetic-induced autophagy by targeting the HIF-1α pathway in retinal ganglion cells. Cell Mol Neurobiol 32:1275–1285. https://doi.org/10.1007/s10571-012-9852-0

    Article  CAS  PubMed  Google Scholar 

  73. Chen S, Ren Q, Zhang J et al (2014) N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain. Neuropathol Appl Neurobiol 40:759–777. https://doi.org/10.1111/nan.12103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Giovanni Politi is kindly acknowledged for his technical help with the experiments. We would like to thank to Dr. Luigi Francesco Iannone who has made the experimental scheme.

Funding

Nothing to declare.

Author information

Authors and Affiliations

Authors

Contributions

Rita Citraro, Antonio Leo, Giovambattista De Sarro, and Andrew Constanti contributed to conceptualization; Antonio Leo, Martina Tallarico, Emilio Russo, and Rita Citraro performed formal analysis and investigation; Martina Tallarico, Antonio Leo, Carmen De Caro, Maria Caterina Zito, and Lorenza Guarnieri provided methodology; Antonio Leo, Martina Tallarico, Andrew Constanti, and Emilio Russo performed writing—original draft preparation; Antonio Leo, Emilio Russo, and Rita Citraro performed writing—reviewing and editing.

Corresponding authors

Correspondence to Antonio Leo or Andrew Constanti.

Ethics declarations

Ethics Approval

The experimental protocols and the procedures reported here were approved (Authorization n° 491/2016-PR) by the Animal Care Committee of the University of Catanzaro, Italy.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that there are no conflicts of interest to be disclosed.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 620 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tallarico, M., Leo, A., Guarnieri, L. et al. N-acetylcysteine aggravates seizures while improving depressive-like and cognitive impairment comorbidities in the WAG/Rij rat model of absence epilepsy. Mol Neurobiol 59, 2702–2714 (2022). https://doi.org/10.1007/s12035-021-02720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02720-3

Keywords

Navigation