Skip to main content

Advertisement

Log in

The Role of Chronic Infection in Alzheimer’s Disease: Instigators, Co-conspirators, or Bystanders?

  • Infectious Involvement in Neurological Disease (B Balin, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Herein, we provide a critical review of the clinical and translational research examining the relationship between viral and bacterial pathogens and Alzheimer’s disease. In addition, we provide an overview of the biological pathways through which chronic infection may contribute to Alzheimer’s disease.

Recent Findings

Dementia due to Alzheimer’s disease is a leading cause of disability among older adults in developed countries, yet knowledge of the causative factors that promote Alzheimer’s disease pathogenesis remains incomplete. Over the past several decades, numerous studies have demonstrated an association of chronic viral and bacterial infection with Alzheimer’s disease. Implicated infectious agents include numerous herpesviruses (HSV-1, HHV-6, HHV-7) and various gastric, enteric, and oral bacterial species, as well as Chlamydia pneumonia and multiple spirochetes.

Summary

Evidence supports the association between multiple pathogens and Alzheimer’s disease risk. Whether these pathogens play a causal role in Alzheimer’s pathophysiology remains an open question. We propose that the host immune response to active or latent infection in the periphery or in the brain triggers or accelerates the Alzheimer’s disease processes, including the accumulation of amyloid-ß and pathogenic tau, and neuroinflammation. While recent research suggests that such theories are plausible, additional longitudinal studies linking microorganisms to Aß and phospho-tau development, neuroinflammation, and clinically defined Alzheimer’s dementia are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

N/A.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 2020. 16(3): p. 391-460

  2. Vaz M, Silvestre S. Alzheimer’s disease: recent treatment strategies. Eur J Pharmacol. 2020;887:173554.

    Article  CAS  PubMed  Google Scholar 

  3. Fulop T, et al. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front Aging Neurosci. 2018;10:224.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jamieson GA, et al. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J Med Virol. 1991;33(4):224–7.

    Article  CAS  PubMed  Google Scholar 

  5. Gérard HC, et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol. 2006;48(3):355–66.

    Article  PubMed  Google Scholar 

  6. Balin BJ, et al. Chlamydia pneumoniae: an etiologic agent for late-onset dementia. Front Aging Neurosci. 2018;10:302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miklossy J. Bacterial amyloid and DNA are important constituents of senile plaques: further evidence of the spirochetal and biofilm nature of senile plaques. J Alzheimers Dis. 2016;53(4):1459–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dominy SS, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5(1):eaau3333.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Villemagne VL, et al. Amyloid ß deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–67.

    Article  CAS  PubMed  Google Scholar 

  11. Guo T, et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease Pathogenesis. Biol Psychiatry. 2015;77(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  13. Kunkle BW, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aß, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan Z, et al. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain. 2017;140(3):792–803.

    PubMed  PubMed Central  Google Scholar 

  15. Craft JM, Watterson DM, Van Eldik LJ. Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006;53(5):484–90.

    Article  PubMed  Google Scholar 

  16. Sims R, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 2017;49(9):1373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heneka MT, et al. Neuroinflammation in Alzheimer’s disease. The Lancet Neurology. 2015;14(4):388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Eldik LJ, et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimer's & dementia (New York, N Y). 2016;2(2):99–109.

    Article  Google Scholar 

  19. Ising C, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cuello AC. Early and late CNS inflammation in Alzheimer’s disease: two extremes of a continuum? Trends Pharmacol Sci. 2017;38(11):956–66.

    Article  CAS  PubMed  Google Scholar 

  21. Itzhaki RF, et al. Do infections have a role in the pathogenesis of Alzheimer disease? Nat Rev Neurol. 2020;16(4):193–7.

    Article  PubMed  Google Scholar 

  22. Torres L, et al. Toxoplasma gondii alters NMDAR signaling and induces signs of Alzheimer’s disease in wild-type, C57BL/6 mice. J Neuroinflammation. 2018;15(1):57–7.

  23. Kusbeci OY, et al. Could Toxoplasma gondii have any role in Alzheimer disease? Alzheimer Dis Assoc Disord. 2011;25(1):1–3.

    Article  PubMed  Google Scholar 

  24. Parady B. Innate immune and fungal model of Alzheimer’s disease. Journal of Alzheimer's disease reports. 2018;2(1):139–52.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pisa D, et al. Direct visualization of fungal infection in brains from patients with Alzheimer’s disease. J Alzheimers Dis. 2015;43(2):613–24.

    Article  CAS  PubMed  Google Scholar 

  26. Alonso R, et al. Identification of fungal species in brain tissue from Alzheimer’s disease by next-generation sequencing. J Alzheimers Dis. 2017;58(1):55–67.

    Article  CAS  PubMed  Google Scholar 

  27. Fülöp T, et al. Role of microbes in the development of Alzheimer’s disease: state of the art - an International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet. 2018;9:362.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fulop T, et al. Does HIV infection contribute to increased beta-amyloid synthesis and plaque formation leading to neurodegeneration and Alzheimer’s disease? J Neuro-Oncol. 2019;25(5):634–47.

    CAS  Google Scholar 

  29. Canet G, et al. HIV neuroinfection and Alzheimer’s disease: similarities and potential links? Front Cell Neurosci. 2018;12:307–7.

  30. Rubin LH, Sundermann EE, Moore DJ. The current understanding of overlap between characteristics of HIV-associated neurocognitive disorders and Alzheimer's disease. J Neuro-Oncol. 2019;25(5):661–72.

    Google Scholar 

  31. Amran A, et al. Influenza vaccination is associated with a reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2020;16(S10):e041693.

    Article  Google Scholar 

  32. Verreault R, et al. Past exposure to vaccines and subsequent risk of Alzheimer’s disease. CMAJ : Canadian Medical Association journal = journal de l’Association medicale canadienne. 2001;165(11):1495–8.

    CAS  PubMed  Google Scholar 

  33. Imfeld P, et al. Influenza infections and risk of Alzheimer’s disease. Brain Behav Immun. 2016;57:187–92.

    Article  PubMed  Google Scholar 

  34. Ball MJ. Limbic predilection in Alzheimer dementia: is reactivated herpesvirus involved? Can J Neurol Sci. 1982;9(3):303–6.

    Article  CAS  PubMed  Google Scholar 

  35. Sequiera LW, et al. Detection of herpes-simplex viral genome in brain tissue. Lancet. 1979;2(8143):609–12.

    Article  CAS  PubMed  Google Scholar 

  36. Jamieson GA, et al. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J Pathol. 1992;167(4):365–8.

    Article  CAS  PubMed  Google Scholar 

  37. Wozniak MA, et al. Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients. J Med Virol. 2005;75(2):300–6.

    Article  PubMed  Google Scholar 

  38. Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol. 2009;217(1):131–8.

    Article  CAS  PubMed  Google Scholar 

  39. Eimer WA, et al. Alzheimer’s disease-associated ß-amyloid is rapidly seeded by Herpesviridae to protect against brain infection. Neuron. 2018;99(1):56–63.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Valyi-Nagy T, et al. Herpes simplex virus type 1 latency in the murine nervous system is associated with oxidative damage to neurons. Virology. 2000;278(2):309–21.

    Article  CAS  PubMed  Google Scholar 

  41. Schachtele SJ, et al. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2. J Neuroinflammation. 2010;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Itzhaki RF, et al. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet. 1997;349(9047):241–4.

    Article  CAS  PubMed  Google Scholar 

  43. Koelle DM, et al. APOE genotype is associated with oral herpetic lesions but not genital or oral herpes simplex virus shedding. Sex Transm Infect. 2010;86(3):202–6.

    Article  PubMed  Google Scholar 

  44. Zhao N, et al. Apolipoprotein E, receptors, and modulation of Alzheimer’s disease. Biol Psychiatry. 2018;83(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  45. Honjo K, van Reekum R, Verhoeff NP. Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement. 2009;5(4):348–60.

    Article  PubMed  Google Scholar 

  46. Itzhaki RF, Wozniak MA. Herpes simplex virus type 1, apolipoprotein E, and cholesterol: a dangerous liaison in Alzheimer’s disease and other disorders. Prog Lipid Res. 2006;45(1):73–90.

    Article  CAS  PubMed  Google Scholar 

  47. Carbone I, et al. Herpes virus in Alzheimer’s disease: relation to progression of the disease. Neurobiol Aging. 2014;35(1):122–9.

    Article  PubMed  Google Scholar 

  48. Aiello AE, et al. The influence of latent viral infection on rate of cognitive decline over 4 years. J Am Geriatr Soc. 2006;54(7):1046–54.

    Article  PubMed  Google Scholar 

  49. Tarter KD, et al. Persistent viral pathogens and cognitive impairment across the life course in the third national health and nutrition examination survey. J Infect Dis. 2014;209(6):837–44.

    Article  PubMed  Google Scholar 

  50. Matheï C, et al. Associations between cytomegalovirus infection and functional impairment and frailty in the BELFRAIL Cohort. J Am Geriatr Soc. 2011;59(12):2201–8.

    Article  PubMed  Google Scholar 

  51. Pogo BG, Casals J, Elizan TS. A study of viral genomes and antigens in brains of patients with Alzheimer’s disease. Brain. 1987;110(Pt 4):907–15.

    Article  PubMed  Google Scholar 

  52. Lin WR, et al. Herpesviruses in brain and Alzheimer’s disease. J Pathol. 2002;197(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  53. •• Warren-Gash C, et al. Human herpesvirus infections and dementia or mild cognitive impairment: a systematic review and meta-analysis. Sci Rep. 2019;9(1):4743–3 This meta-analysis of 57 human studies across various geographic settings examined the pooled association of human herpesviruses (HSV-1/2, HHV6, VZV, EBV) with risk for dementia and mild cognitive impairment (MCI).

  54. Payne S. Chapter 34 - family Herpesviridae. In: Viruses SP, editor. : Academic Press; 2017. p. 269–78.

  55. Readhead B, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 2018;99(1):64–82.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. •• Allnutt MA, et al. Human herpesvirus 6 detection in Alzheimer’s disease cases and controls across multiple cohorts. Neuron. 2020;105(6):1027–1035.e2 This study examined HHV-6 presence in three independent cohorts using RNA sequencing and DNA samples derived from the autopsied brains of individuals with and without Alzheimer’s disease. The authors did not find a strong association between HHV-6 and Alzheimer’s disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wozniak MA, et al. Does apolipoprotein E determine outcome of infection by varicella zoster virus and by Epstein Barr virus? Eur J Hum Genet. 2007;15(6):672–8.

    Article  CAS  PubMed  Google Scholar 

  58. Volpi A. Epstein-Barr virus and human herpesvirus type 8 infections of the central nervous system. Herpes. 2004;11(Suppl 2):120a–7a.

    PubMed  Google Scholar 

  59. Itzhaki RF, et al. Microbes and Alzheimer’s disease. Journal of Alzheimer’s disease : JAD. 2016;51(4):979–84.

    Article  PubMed  Google Scholar 

  60. Choroszy-Król I, et al. Infections caused by Chlamydophila pneumoniae. Adv Clin Exp Med. 2014;23(1):123–6.

    Article  PubMed  Google Scholar 

  61. Shima K, Kuhlenbäumer G, Rupp J. Chlamydia pneumoniae infection and Alzheimer’s disease: a connection to remember? Med Microbiol Immunol. 2010;199(4):283–9.

    Article  PubMed  Google Scholar 

  62. Balin BJ, et al. Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol. 1998;187(1):23–42.

    Article  CAS  PubMed  Google Scholar 

  63. Gérard HC, et al. The load of Chlamydia pneumoniae in the Alzheimer’s brain varies with APOE genotype. Microb Pathog. 2005;39(1):19–26.

    Article  PubMed  Google Scholar 

  64. Gérard HC, et al. Apolipoprotein E4 enhances attachment of Chlamydophila (Chlamydia) pneumoniae elementary bodies to host cells. Microb Pathog. 2008;44(4):279–85.

    Article  PubMed  Google Scholar 

  65. Holmes C, Cotterell D. Role of infection in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2009;23(12):993–1002.

    Article  CAS  PubMed  Google Scholar 

  66. Petzke M, Schwartz I. Borrelia burgdorferi pathogenesis and the immune response. Clin Lab Med. 2015;35(4):745–64.

    Article  PubMed  Google Scholar 

  67. Herrera-Landero A, et al. Borrelia burgdorferi as a risk factor for Alzheimer’s dementia and mild cognitive impairment. European Geriatric Medicine. 2019;10(3):493–500.

    Article  PubMed  Google Scholar 

  68. O’Day DH, Catalano A. A lack of correlation between the incidence of Lyme disease and deaths due to Alzheimer’s disease. J Alzheimers Dis. 2014;42:115–8.

    Article  PubMed  Google Scholar 

  69. Radolf JD, et al. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol. 2016;14(12):744–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miklossy J, Biology and neuropathology of dementia in Syphilis and Lyme Disease, in Handbook of Clinical Neurology. 2008, Elsevier. p. 825-844

  71. Miklossy J. Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front Aging Neurosci. 2015;7:46.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Carabotti M, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–9.

    PubMed  PubMed Central  Google Scholar 

  73. Wang H-X, Wang Y-P. Gut microbiota-brain axis. Chin Med J. 2016;129(19):2373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vogt NM, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7(1):13537–7.

  75. Lukiw WJ. Bacteroides fragilis Lipopolysaccharide and inflammatory signaling in Alzheimer’s disease. Front Microbiol. 2016;7:1544.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li H, et al. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease –conformist, nonconformist, and realistic prospects for AD pathogenesis. Translational Neurodegeneration. 2018;7(1):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen T, et al., The human oral microbiome database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database : the journal of biological databases and curation, 2010. 2010: p. baq013-baq013

  78. Sureda A, et al. Oral microbiota and Alzheimer’s disease: do all roads lead to Rome? Pharmacol Res. 2020;151:104582.

    Article  CAS  PubMed  Google Scholar 

  79. Orr ME, et al. Can oral health and oral-derived biospecimens predict progression of dementia? Oral Dis. 2020;26(2):249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Aguayo S, et al. Association between Alzheimer’s disease and oral and gut microbiota: are pore forming proteins the missing link? J Alzheimers Dis. 2018;65(1):29–46.

    Article  PubMed  Google Scholar 

  81. Aragón F, et al. Oral health in Alzheimer’s disease: a multicenter case-control study. Clin Oral Investig. 2018;22(9):3061–70.

    Article  PubMed  Google Scholar 

  82. How KY, Song KP, Chan KG. Porphyromonas gingivalis: an overview of periodontopathic pathogen below the gum line. Front Microbiol. 2016;7:53–3.

  83. Tamse A, Schwartz Y. Unusual findings in heart and dental pulp in systemic primary amyloidosis. J Oral Med. 1981;36(1):16–7.

    CAS  PubMed  Google Scholar 

  84. Kim J-M, et al. Dental health, nutritional status and recent-onset dementia in a Korean community population. International Journal of Geriatric Psychiatry. 2007;22(9):850–5.

    Article  PubMed  Google Scholar 

  85. Martande SS, et al. Periodontal health condition in patients with Alzheimer’s disease. Am J Alzheimers Dis Other Dement. 2014;29(6):498–502.

    Article  Google Scholar 

  86. Sochocka M, et al. Association between periodontal health status and cognitive abilities. The role of cytokine profile and systemic inflammation. Curr Alzheimer Res. 2017;14(9):978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen C-K, Wu Y-T, Chang Y-C. Association between chronic periodontitis and the risk of Alzheimer’s disease: a retrospective, population-based, matched-cohort study. Alzheimers Res Ther. 2017;9(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  88. . Demmer RT, et al. Periodontal disease and incident dementia: the atherosclerosis Risk in communities study (ARIC). Neurology. 2020;95(12):e1660–71 Using a community-based cohort of 8,275 participants, the authors demonstrated that midlife periodontal disease is associated with a modest increase in risk for dementia or mild cognitive impairment later in life.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cuomo P, et al. An in vitro model to investigate the role of Helicobacter pylori in type 2 diabetes, obesity, Alzheimer’s disease and cardiometabolic disease. Int J Mol Sci. 2020;21:21.

    Article  Google Scholar 

  90. Doulberis M, et al. Review: impact of Helicobacter pylori on Alzheimer’s disease: what do we know so far? Helicobacter. 2018;23:1.

    Article  Google Scholar 

  91. Fischbach W, Malfertheiner P. Helicobacter pylori infection. Dtsch Arztebl Int. 2018;115(25):429–36.

    PubMed  PubMed Central  Google Scholar 

  92. Khoder G, et al. Prevalence of Helicobacter pylori and its associated factors among healthy asymptomatic residents in the United Arab Emirates. Pathogens (Basel, Switzerland). 2019;8(2):44.

    Google Scholar 

  93. Kovács T, Cairns NJ, Lantos PL. Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. NeuroReport. 2001;12:2.

    Article  Google Scholar 

  94. Kountouras J, et al. A proposed role of human defensins in Helicobacter pylori-related neurodegenerative disorders. Med Hypotheses. 2014;82(3):368–73.

    Article  CAS  PubMed  Google Scholar 

  95. Figura N, et al. Extragastric manifestations of Helicobacter pylori infection. Helicobacter. 2010;15(s1):60–8.

    Article  PubMed  Google Scholar 

  96. Kountouras J, Chatzopoulos D, Zavos C. Reactive oxygen metabolites and upper gastrointestinal diseases. Hepatogastroenterology. 2001;48(39):743–51.

    CAS  PubMed  Google Scholar 

  97. Kountouras J, et al. Potential implications of Helicobacter pylori-related neutrophil-activating protein. World J Gastroenterol. 2012;18(5):489–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kountouras J, et al. Impact of reactive oxygen species generation on Helicobacter pylori-related extragastric diseases: a hypothesis. Free Radic Res. 2017;51(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  99. Malaguarnera M, et al. Helicobacter pylori and Alzheimer’s disease: a possible link. European Journal of Internal Medicine. 2004;15(6):381–6.

    Article  PubMed  Google Scholar 

  100. Kountouras J, et al. Relationship between Helicobacter pylori infection and Alzheimer disease. Neurology. 2006;66(6):938.

    Article  CAS  PubMed  Google Scholar 

  101. Roubaud-Baudron C, et al. Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol Aging. 2012;33(5):1009.e11–9.

    Article  CAS  Google Scholar 

  102. Moutsopoulos NM, Madianos PN. Low-grade inflammation in chronic infectious diseases: paradigm of periodontal infections. Ann N Y Acad Sci. 2006;1088:251–64.

    Article  CAS  PubMed  Google Scholar 

  103. Oshima T, et al. Association of Helicobacter pylori infection with systemic inflammation and endothelial dysfunction in healthy male subjects. J Am Coll Cardiol. 2005;45(8):1219–22.

    Article  CAS  PubMed  Google Scholar 

  104. Jackson L, et al. A population-based epidemiologic study of Helicobacter pylori infection and its association with systemic inflammation. Helicobacter. 2009;14(5):108–13.

    Article  PubMed  Google Scholar 

  105. Newcombe EA, et al. Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflammation. 2018;15(1):276.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lai KSP, et al. Peripheral inflammatory markers in Alzheimer’s disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry. 2017;88(10):876–82.

    Article  PubMed  Google Scholar 

  107. Kahn MS, et al. Prolonged elevation in hippocampal Aß and cognitive deficits following repeated endotoxin exposure in the mouse. Behav Brain Res. 2012;229(1):176–84.

    Article  CAS  PubMed  Google Scholar 

  108. Liu Y, et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep. 2020;40:2.

    Google Scholar 

  109. Schmidt R, et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann Neurol. 2002;52(2):168–74.

    Article  PubMed  Google Scholar 

  110. Walker KA, et al. Systemic inflammation during midlife and cognitive change over 20 years: The ARIC Study. Neurology. 2019;92(11):e1256–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Walker KA, et al. The association of mid-to late-life systemic inflammation with white matter structure in older adults: The Atherosclerosis Risk in Communities Study. Neurobiol Aging. 2018;68:26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tao Q, et al. Association of chronic low-grade inflammation with risk of Alzheimer disease in ApoE4 carriers. JAMA Netw Open. 2018;1(6):e183597.

    Article  PubMed  PubMed Central  Google Scholar 

  113. McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis. 2016;54(3):853–7.

    Article  PubMed  Google Scholar 

  114. Thayer JF, Sternberg EM. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav Immun. 2010;24(8):1223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. 2005;11(8):973–84.

    Article  CAS  PubMed  Google Scholar 

  116. Quan N. Immune-to-brain signaling: how important are the blood-brain barrier-independent pathways? Mol Neurobiol. 2008;37(2-3):142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61(1):71–90.

    Article  PubMed  Google Scholar 

  118. Niraula A, Sheridan JF, Godbout JP. Microglia priming with aging and stress. Neuropsychopharmacology. 2017;42(1):318–33.

    Article  PubMed  Google Scholar 

  119. Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci. 2020;77(14):2751–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen J, et al. Chlamydia pneumoniae infection and cerebrovascular disease: a systematic review and meta-analysis. BMC Neurol. 2013;13:183.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang ZW, et al. Helicobacter pylori infection contributes to high risk of ischemic stroke: evidence from a meta-analysis. J Neurol. 2012;259(12):2527–37.

    Article  PubMed  Google Scholar 

  122. Elkind MS, et al. Infectious burden and risk of stroke: the northern Manhattan study. Arch Neurol. 2010;67(1):33–8.

    Article  PubMed  Google Scholar 

  123. Elkind Mitchell SV, et al. Infection as a stroke risk factor and determinant of outcome after stroke. Stroke. 2020;51(10):3156–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shah PK. Inflammation, infection and atherosclerosis. Trends Cardiovasc Med. 2019;29(8):468–72.

    Article  CAS  PubMed  Google Scholar 

  125. Bortolotti D, et al. HHV-6A infection induces amyloid-beta expression and activation of microglial cells. Alzheimers Res Ther. 2019;11(1):104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kaushik DK, Gupta M, Basu A. Microglial response to viral challenges: every silver lining comes with a cloud. Front Biosci (Landmark Ed). 2011;16:2187–205.

    Article  CAS  Google Scholar 

  127. Marques CP, et al. Microglial cells initiate vigorous yet non-protective immune responses during HSV-1 brain infection. Virus Res. 2006;121(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  128. Kumar DK, et al. Amyloid-ß peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 2016;8(340):340ra72.

    Article  PubMed  Google Scholar 

  129. Soscia SJ, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5(3):e9505.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bergman P, et al. Induction of the antimicrobial peptide CRAMP in the blood-brain barrier and meninges after meningococcal infection. Infect Immun. 2006;74(12):6982–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bourgade K, et al. ß-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology. 2015;16(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  132. Chen VC, et al. Herpes zoster and dementia: a nationwide population-based cohort study. J Clin Psychiatry. 2018;79:1.

    Article  Google Scholar 

  133. Tzeng NS, et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections-a nationwide, population-based cohort study in Taiwan. Neurotherapeutics. 2018;15(2):417–29.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bae S, et al., Association of herpes zoster with dementia and effect of antiviral therapy on dementia: a population-based cohort study. Eur Arch Psychiatry Clin Neurosci, 2020.

  135. Schnier C, et al., Antiherpetic medication and incident dementia: observational cohort studies in four countries. medRxiv, 2020: p. 2020.12.03.20241497

  136. Forloni G, et al. Anti-amyloidogenic activity of tetracyclines: studies in vitro. FEBS Lett. 2001;487(3):404–7.

    Article  CAS  PubMed  Google Scholar 

  137. Tomiyama T, et al. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J Biol Chem. 1996;271(12):6839–44.

    Article  CAS  PubMed  Google Scholar 

  138. Familian A, et al. Inhibitory effect of minocycline on amyloid beta fibril formation and human microglial activation. Glia. 2006;53(3):233–40.

    Article  PubMed  Google Scholar 

  139. Devanand DP, et al. Antiviral therapy: valacyclovir treatment of Alzheimer’s disease (VALAD) trial: protocol for a randomised, double-blind, placebo-controlled, treatment trial. BMJ Open. 2020;10(2):e032112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Loeb MB, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc. 2004;52(3):381–7.

    Article  PubMed  Google Scholar 

  141. Howard R, et al. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2020;77(2):164–74.

    Article  PubMed  Google Scholar 

Download references

Code Availability

N/A.

Funding

This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging. This study was also supported by contracts K23 AG064122 (Dr. Walker). Compliance with the National Institutes of Health (NIH) Public Access Policy requires proper submission of this work to PubMed Central (PMC).

Author information

Authors and Affiliations

Authors

Contributions

LB and KW conceptualized, drafted, and edited the manuscript.

Corresponding author

Correspondence to Keenan A. Walker.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics Approval and Consent to Participate

N/A.

Consent for Publication

Obtained.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Infectious Involvement in Neurological Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, L., Walker, K.A. The Role of Chronic Infection in Alzheimer’s Disease: Instigators, Co-conspirators, or Bystanders?. Curr Clin Micro Rpt 8, 199–212 (2021). https://doi.org/10.1007/s40588-021-00168-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-021-00168-6

Keywords

Navigation