Skip to main content
Log in

KATP Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The ATP-sensitive potassium (KATP) channel directly regulates the microglia-mediated inflammatory response following CNS injury. To determine the putative role of the KATP channel in amyotrophic lateral sclerosis (ALS) pathology, we investigated whether ALS induces changes in KATP channel expression in the spinal cord and motor cortex. We also characterized new functional variants of human ABCC8, ABCC9, KCNJ8, and KCNJ11 genes encoding for the KATP channel and analyzed their association with ALS risk, rate of progression, and survival in a Spanish ALS cohort. The expression of ABCC8 and KCNJ8 genes was enhanced in the spinal cord of ALS samples, and KCNJ11 increased in motor cortex of ALS samples, as determined by real-time polymerase chain reaction. We then sequenced the exons and regulatory regions of KATP channel genes from a subset of 28 ALS patients and identified 50 new genetic variants. For the case-control association analysis, we genotyped five selected polymorphisms with predicted functional relevance in 185 Spanish ALS (134 spinal ALS and 51 bulbar ALS) patients and 493 controls. We found that bulbar ALS patients presenting the G/G genotype of the rs4148646 variant of ABCC8 and the T/T genotype of the rs5219 variant of KCNJ11 survived longer than other ALS patients presenting other genotypes. Also, the C/C genotype of the rs4148642 variant of ABCC8 and the T/C genotype of the rs148416760 variant of ABCC9 modified the progression rate in spinal ALS patients. Our results suggest that the KATP channel plays a role in the pathophysiological mechanisms of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Conte A, Lattante S, Luigetti M, del Grande A, Romano A, Marcaccio A, Marangi G, Rossini PM et al (2012) Classification of familial amyotrophic lateral sclerosis by family history: effects on frequency of genes mutation. J Neurol Neurosurg Psychiatry 83:1201–1203. https://doi.org/10.1136/jnnp-2012-302897

    Article  PubMed  Google Scholar 

  2. Kiernan MC, Vucic S, Cheah BC, Turner M, Eisen A, Hardiman O et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  PubMed  CAS  Google Scholar 

  3. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700. https://doi.org/10.1056/NEJM200105313442207

    Article  PubMed  CAS  Google Scholar 

  4. Swinnen B, Robberecht W (2014) The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10:661–670. https://doi.org/10.1038/nrneurol.2014.184

    Article  PubMed  Google Scholar 

  5. Mackenzie I, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9:995–1007. https://doi.org/10.1016/S1474-4422(10)70195-2

    Article  PubMed  CAS  Google Scholar 

  6. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH, Murphy J, Shoesmith C et al (2009) Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:131–146

    Article  PubMed  Google Scholar 

  7. Crisafulli SG, Brajkovic S, Cipolat Mis MS, Parente V, Corti S (2017) Therapeutic strategies under development targeting inflammatory mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0532-4

  8. Rodríguez MJ, Mahy N (2016) Neuron-microglia interactions in motor neuron degeneration. The inflammatory hypothesis in amyotrophic lateral sclerosis revisited. Curr Med Chem 23:4753–4772

    Article  PubMed  CAS  Google Scholar 

  9. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10:253–263. https://doi.org/10.1016/S1474-4422(11)70015-1

    Article  PubMed  CAS  Google Scholar 

  10. Hooten KG, Beers DR, Zhao W, Appel SH (2015) Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics 12:364–375. https://doi.org/10.1007/s13311-014-0329-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chiu I, Morimoto E, Goodarzi H et al (2013) A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 4:385–401. https://doi.org/10.1016/j.celrep.2013.06.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ortega FJ, Gimeno-Bayon J, Espinosa-Parrilla JF, Carrasco JL, Batlle M, Pugliese M, Mahy N, Rodríguez MJ (2012) ATP-dependent potassium channel blockade strengthens microglial neuroprotection after hypoxia-ischemia in rats. Exp Neurol 235:282–296. https://doi.org/10.1016/j.expneurol.2012.02.010

    Article  PubMed  CAS  Google Scholar 

  13. Ren Y, Ye M, Chen S, Ding J (2016) CD200 inhibits inflammatory response by promoting KATP Channel opening in microglia cells in Parkinson’s disease. Med Sci Monit 22:1733–1741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rodríguez MJ, Martínez-Moreno M, Ortega FJ, Mahy N (2013) Targeting microglial K(ATP) channels to treat neurodegenerative diseases: a mitochondrial issue. Oxidative Med Cell Longev 2013:194546–194513. https://doi.org/10.1155/2013/194546

    Article  CAS  Google Scholar 

  15. Virgili N, Espinosa-Parrilla JF, Mancera P, Pastén-Zamorano A, Gimeno-Bayon J, Rodríguez MJ, Mahy N, Pugliese M (2011) Oral administration of the KATP channel opener diazoxide ameliorates disease progression in a murine model of multiple sclerosis. J Neuroinflammation 8:149. https://doi.org/10.1186/1742-2094-8-149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhao A-P, Dong Y-F, Liu W, Gu J, Sun XL (2014) Nicorandil inhibits inflammasome activation and toll-like receptor-4 signal transduction to protect against oxygen-glucose deprivation-induced inflammation in BV-2 cells. CNS Neurosci Ther 20:147–153. https://doi.org/10.1111/cns.12178

    Article  PubMed  CAS  Google Scholar 

  17. Nichols CG, Lederer WJ (1991) Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Phys 261:H1675–H1686

    CAS  Google Scholar 

  18. Ashford ML, Boden PR, Treherne JM (1990) Glucose-induced excitation of hypothalamic neurones is mediated by ATP-sensitive K+ channels. Pflugers Arch 415:479–483

    Article  PubMed  CAS  Google Scholar 

  19. Ramonet D, Rodríguez MJ, Pugliese M, Mahy N (2004) Putative glucosensing property in rat and human activated microglia. Neurobiol Dis 17:1–9. https://doi.org/10.1016/j.nbd.2003.11.019

    Article  PubMed  CAS  Google Scholar 

  20. Ortega FJ, Jolkkonen J, Mahy N, Rodríguez MJ (2013) Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia. J Cereb Blood Flow Metab 33:356–364. https://doi.org/10.1038/jcbfm.2012.166

    Article  PubMed  CAS  Google Scholar 

  21. Virgili N, Mancera P, Wappenhans B, Sorrosal G, Biber K, Pugliese M, Espinosa-Parrilla JF (2013) K(ATP) channel opener diazoxide prevents neurodegeneration: a new mechanism of action via antioxidative pathway activation. PLoS One 8:e75189. https://doi.org/10.1371/journal.pone.0075189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ortega FJ, Vukovic J, Rodríguez MJ, Bartlett PF (2014) Blockade of microglial KATP channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells. Glia 62:247–258. https://doi.org/10.1002/glia.22603

    Article  PubMed  Google Scholar 

  23. Zhou F, Yao H-H, Wu J-Y, Ding JH, Sun T, Hu G (2008) Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 12:1559–1570. https://doi.org/10.1111/j.1582-4934.2007.00144.x

    Article  PubMed  CAS  Google Scholar 

  24. Martínez-Moreno M, Batlle M, Ortega FJ, Gimeno-Bayón J, Andrade C, Mahy N, Rodríguez MJ (2016) Diazoxide enhances excitotoxicity-induced neurogenesis and attenuates neurodegeneration in the rat non-neurogenic hippocampus. Neuroscience 333:229–243. https://doi.org/10.1016/j.neuroscience.2016.07.032

    Article  PubMed  CAS  Google Scholar 

  25. Roseborough G, Gao D, Chen L, Trush MA, Zhou S, Williams GM, Wei C (2006) The mitochondrial K-ATP channel opener, diazoxide, prevents ischemia-reperfusion injury in the rabbit spinal cord. Am J Pathol 168:1443–1451. https://doi.org/10.2353/ajpath.2006.050569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shukry M, Kamal T, Ali R, Farrag F, Almadaly E, Saleh AA, Abu el-Magd M (2015) Pinacidil and levamisole prevent glutamate-induced death of hippocampal neuronal cells through reducing ROS production. Neurol Res 37:916–923. https://doi.org/10.1179/1743132815Y.0000000077

    Article  PubMed  CAS  Google Scholar 

  27. Proks P, Ashcroft FM (2009) Modeling K(ATP) channel gating and its regulation. Prog Biophys Mol Biol 99:7–19. https://doi.org/10.1016/j.pbiomolbio.2008.10.002

    Article  PubMed  CAS  Google Scholar 

  28. Haghverdizadeh P, Sadat Haerian M, Haghverdizadeh P, Sadat Haerian B (2014) ABCC8 genetic variants and risk of diabetes mellitus. Gene 545:198–204. https://doi.org/10.1016/j.gene.2014.04.040

    Article  CAS  Google Scholar 

  29. Song J, Yang Y, Mauvais-Jarvis F, Wang YP, Niu T (2017) KCNJ11, ABCC8 and TCF7L2 polymorphisms and the response to sulfonylurea treatment in patients with type 2 diabetes: a bioinformatics assessment. BMC Med Genet 18:64. https://doi.org/10.1186/s12881-017-0422-7

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nelson PT, Jicha GA, Wang W-X, Ighodaro E, Artiushin S, Nichols CG, Fardo DW (2015) ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 24:111–125. https://doi.org/10.1016/j.arr.2015.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Allebrandt KV, Amin N, Müller-Myhsok B, Esko T, Teder-Laving M, Azevedo RVDM, Hayward C, van Mill J et al (2013) A K(ATP) channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry 18:122–132. https://doi.org/10.1038/mp.2011.142

    Article  PubMed  CAS  Google Scholar 

  32. Nelson PT, Estus S, Abner EL et al (2014) ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol 127:825–843. https://doi.org/10.1007/s00401-014-1282-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Parsons MJ, Lester KJ, Barclay NL, Nolan PM, Eley TC, Gregory AM (2013) Replication of genome-wide association studies (GWAS) loci for sleep in the British G1219 cohort. Am J Med Genet B Neuropsychiatr Genet 162B:431–438. https://doi.org/10.1002/ajmg.b.32106

    Article  PubMed  CAS  Google Scholar 

  34. Forbes RB, Colville S, Swingler RJ (2001) Are the El Escorial and Revised El Escorial criteria for ALS reproducible? A study of inter-observer agreement. Amyotroph Lateral Scler Other Motor Neuron Disord 2:135–138

    Article  PubMed  CAS  Google Scholar 

  35. Lopez-Lopez A, Gamez J, Syriani E, Morales M, Salvado M, Rodríguez MJ, Mahy N, Vidal-Taboada JM (2014) CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One 9:e96528. https://doi.org/10.1371/journal.pone.0096528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Vidal-Taboada JM, Lopez-Lopez A, Salvado M, Lorenzo L, Garcia C, Mahy N, Rodríguez MJ, Gamez J (2015) UNC13A confers risk for sporadic ALS and influences survival in a Spanish cohort. J Neurol 262:2285–2292. https://doi.org/10.1007/s00415-015-7843-z

    Article  PubMed  CAS  Google Scholar 

  37. Gimeno-Bayón J, López-López A, Rodríguez MJ, Mahy N (2014) Glucose pathways adaptation supports acquisition of activated microglia phenotype. J Neurosci Res 92:723–731. https://doi.org/10.1002/jnr.23356

    Article  PubMed  CAS  Google Scholar 

  38. Bookout AL, Cummins CL, Mangelsdorf DJ et al (2006) High-throughput real-time quantitative reverse transcription PCR. Curr Protoc Mol Biol Chapter 15:Unit 15.8. https://doi.org/10.1002/0471142727.mb1508s73

  39. Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261

    Article  PubMed  CAS  Google Scholar 

  40. Xu Z, Taylor JA (2009) SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 37:W600–W605. https://doi.org/10.1093/nar/gkp290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dayem Ullah AZ, Lemoine NR, Chelala C (2012) SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update). Nucleic Acids Res 40:W65–W70. https://doi.org/10.1093/nar/gks364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. González JR, Armengol L, Solé X et al (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23:644–645. https://doi.org/10.1093/bioinformatics/btm025

    Article  PubMed  Google Scholar 

  43. Gauderman W (2006) Quanto 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. http://hydra.usc.edu/gxe. Accessed 1 Jan 2012

  44. Nelson PT, Katsumata Y, Nho K et al (2016) Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathol 132:841–858. https://doi.org/10.1007/s00401-016-1641-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S et al (2001) Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292:1543–1546. https://doi.org/10.1126/science.1059829

    Article  PubMed  CAS  Google Scholar 

  46. Körner S, Böselt S, Thau N, Rath KJ, Dengler R, Petri S (2013) Differential sirtuin expression patterns in amyotrophic lateral sclerosis (ALS) postmortem tissue: neuroprotective or neurotoxic properties of sirtuins in ALS? Neurodegener Dis 11:141–152. https://doi.org/10.1159/000338048

    Article  PubMed  CAS  Google Scholar 

  47. Yuan F, Xu Z-M, Lu L-Y, Nie H, Ding J, Ying WH, Tian HL (2016) SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation. J Neurochem 136:581–593. https://doi.org/10.1111/jnc.13423

    Article  PubMed  CAS  Google Scholar 

  48. Dumont AO, Hermans E, Goursaud S (2013) Differential regulation of the glutamate transporter variants GLT-1a and GLT-1b in the cortex and spinal cord of transgenic rats expressing hSOD1G93A. Neurochem Int 63:61–68. https://doi.org/10.1016/j.neuint.2013.04.012

    Article  PubMed  CAS  Google Scholar 

  49. Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, Bryan J, Aguilar-Bryan L et al (2006) Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med 355:456–466. https://doi.org/10.1056/NEJMoa055068

    Article  PubMed  CAS  Google Scholar 

  50. Bonfanti DH, Alcazar LP, Arakaki PA, Martins LT, Agustini BC, de Moraes Rego FG, Frigeri HR (2015) ATP-dependent potassium channels and type 2 diabetes mellitus. Clin Biochem 48:476–482. https://doi.org/10.1016/j.clinbiochem.2014.12.026

    Article  PubMed  CAS  Google Scholar 

  51. Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV, Miki T, Seino S, Asirvatham SJ et al (2007) KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat Clin Pract Cardiovasc Med 4:110–116. https://doi.org/10.1038/ncpcardio0792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kamide K, Asayama K, Katsuya T, Ohkubo T, Hirose T, Inoue R, Metoki H, Kikuya M et al (2013) Genome-wide response to antihypertensive medication using home blood pressure measurements: a pilot study nested within the HOMED-BP study. Pharmacogenomics 14:1709–1721. https://doi.org/10.2217/pgs.13.161

    Article  PubMed  CAS  Google Scholar 

  53. Ashcroft F (1996) Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res 28:456–463. https://doi.org/10.1055/s-2007-979837

    Article  PubMed  CAS  Google Scholar 

  54. Koch-Weser J (1976) Diazoxide. N Engl J Med 294:1271–1273. https://doi.org/10.1056/NEJM197606032942306

    Article  PubMed  CAS  Google Scholar 

  55. Radunovic A, Annane D, Rafiq MK, Brassington R, Mustfa N, Cochrane Neuromuscular Group (2017) Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 10:CD004427. https://doi.org/10.1002/14651858.CD004427.pub4

    Article  PubMed  Google Scholar 

  56. Andrews JA, Meng L, Kulke SF, Rudnicki SA, Wolff AA, Bozik ME, Malik FI, Shefner JM (2018) Association between decline in slow vital capacity and respiratory insufficiency, use of assisted ventilation, tracheostomy, or death in patients with amyotrophic lateral sclerosis. JAMA Neurol 75:58–64. https://doi.org/10.1001/jamaneurol.2017.3339

    Article  PubMed  Google Scholar 

  57. Cooper DN (2010) Functional intronic polymorphisms: buried treasure awaiting discovery within our genes. Hum Genomics 4:284–288

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li Q, Chen M, Zhang R, Jiang F, Wang J, Zhou J, Bao Y, Hu C et al (2014) KCNJ11 E23K variant is associated with the therapeutic effect of sulphonylureas in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol 41:748–754. https://doi.org/10.1111/1440-1681.12280

    Article  PubMed  CAS  Google Scholar 

  59. Lu J, Luo Y, Wang J, Hu C, Zhang R, Wang C, Jia W (2017) Association of type 2 diabetes susceptibility loci with peripheral nerve function in a Chinese population with diabetes. J Diabetes Investig 8:115–120. https://doi.org/10.1111/jdi.12546

    Article  PubMed  CAS  Google Scholar 

  60. Souza SW, Alcazar LP, Arakaki PA, Santos-Weiss ICR, Alberton D, Picheth G, Rego FGM (2017) Polymorphism E23K (rs5219) in the KCNJ11 gene in Euro-Brazilian subjects with type 1 and 2 diabetes. Genet Mol Res 16. https://doi.org/10.4238/gmr16029543

  61. Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, Biber K (2016) Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun 55:126–137. https://doi.org/10.1016/j.bbi.2015.11.008

    Article  PubMed  Google Scholar 

  62. Nelson PT, Wang W-X, Wilfred BR, Wei A, Dimayuga J, Huang Q, Ighodaro E, Artiushin S et al (2015) Novel human ABCC9/SUR2 brain-expressed transcripts and an eQTL relevant to hippocampal sclerosis of aging. J Neurochem 134:1026–1039. https://doi.org/10.1111/jnc.13202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yang Y, Li S, Konduru AS, Zhang S, Trower TC, Shi W, Cui N, Yu L et al (2012) Prolonged exposure to methylglyoxal causes disruption of vascular KATP channel by mRNA instability. Am J Phys Cell Physiol 303:C1045–C1054. https://doi.org/10.1152/ajpcell.00020.2012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to the Neurological Tissue Bank of the IDIBAPS Biobank and especially to Dr. Hellen Gelpi for the human postmortem brain samples and data procurement. The authors also thank to the Spanish National DNA Bank for providing control samples and to Alan Lopez-Lopez for helping in data collection.

Funding

This research was supported by grants 2014SGR1115 and RD10-1-0072 from the Generalitat de Catalunya (Spain). MJR was supported by grant SAF2017-88076-R from the Spanish Ministry of Economy, Industry and Competitivity, the Spanish National Research Agency, and the European Regional Development Fund. JG and MS were supported by grants FIS-FEDER PI16/01673 and FIS-FEDER PI17/00789, respectively, both of them from the Spanish Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel J. Rodríguez.

Ethics declarations

The local IRBs at the Vall d’Hebron Research Institute, the DIBAPS Biobank, and the Spanish National DNA Bank approved the protocols of this study. It was conducted according to the principles set out in the Declaration of Helsinki. All patients and/or close relatives gave their written informed consent to participation in the study in paper format, and a blood sample for genetic analysis was obtained from all of them. CNS tissue donors gave their informed written consent for the use of CNS tissue for research purposes. The categorization of ALS patients was performed according to their clinical features (familial or sporadic ALS forms, bulbar or spinal or respiratory onset, rate of progression, and survival time). No experiments with animals were performed in this study.

Conflict of Interest

MP, NM, and MJR applied for a PCT application “Diazoxide for use in the treatment of amyotrophic lateral sclerosis (ALS)” (Application number PCT/EP2011/064061). The other authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 23.2 kb).

ESM 2

(DOCX 23.4 kb).

ESM 3

(DOCX 23 kb).

ESM 4

(DOCX 25.2 kb).

ESM 5

(DOCX 26.2 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal-Taboada, J.M., Pugliese, M., Salvadó, M. et al. KATP Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis. Mol Neurobiol 55, 7962–7972 (2018). https://doi.org/10.1007/s12035-018-0970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0970-7

Keywords

Navigation