Skip to main content
Log in

UNC13A confers risk for sporadic ALS and influences survival in a Spanish cohort

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

To investigate the association of functional variants of the human UNC13A gene with the risk of ALS, survival and the disease progression rate in a Spanish ALS cohort. 136 sporadic ALS (sALS) patients and 487 healthy controls were genotyped for the UNC13A rs12608932 variant. Clinical characterization of ALS patients included gender, age at first symptom, initial topography, disease progression rate, and survival. Genetic association was analyzed under five inheritance models. The sALS patients with the rs12608932CC genotype had an increased risk of ALS under a recessive genetic model [OR 2.16; 95 % CI (1.23, 3.8), p = 0.009; corrected p = 0.028]. Genotypes with a C allele are also associated with increased risk [OR 1.47; 95 % CI (1.11, 1.95); p = 0.008; corrected p = 0.023] under an additive model. sALS patients with a C/C genotype had a shorter survival than patients with A/A and A/C genotypes [HR 1.44; 95 % CI (1.11, 1.873); p = 0.007] under a recessive model. In an overdominant model, heterozygous patients had a longer survival than homozygous patients [HR 0.36; 95 % CI (0.22, 0.59); p = 0.001]. The rs12608932 genotypes modify the progression of symptoms measured using the ALSFRS-R. No association with age of onset, initial topography or rate of decline in FVC was found. Our results show that rs12608932 is a risk factor for ALS in the Spanish population and replicate the findings described in other populations. The rs12608932 is a modifying factor for survival and disease progression rate in our series. Our results also corroborated that it did not influence the age of onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chiò A, Calvo A, Moglia C et al (2011) Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 82:740–746. doi:10.1136/jnnp.2010.235952

    Article  PubMed  Google Scholar 

  2. Van den Berg LH (2011) ALS: disease or syndrome? J Neurol Neurosurg Psychiatry 82:711. doi:10.1136/jnnp.2011.241513

    Article  PubMed  Google Scholar 

  3. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615. doi:10.1038/nrneurol.2011.150

    Article  CAS  PubMed  Google Scholar 

  4. Ince PG, Highley JR, Kirby J et al (2011) Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology. Acta Neuropathol 122:657–671. doi:10.1007/s00401-011-0913-0

    Article  CAS  PubMed  Google Scholar 

  5. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9:617–628. doi:10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  6. Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nat Neurosci 17:17–23. doi:10.1038/nn.3584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Van Es MA, Veldink JH, Saris CGJ et al (2009) Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nat Genet 41:1083–1087. doi:10.1038/ng.442

    Article  PubMed  Google Scholar 

  8. Shatunov A, Mok K, Newhouse S et al (2010) Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurol 9:986–994. doi:10.1016/S1474-4422(10)70197-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Daoud H, Belzil V, Desjarlais A et al (2010) Analysis of the UNC13A gene as a risk factor for sporadic amyotrophic lateral sclerosis. Arch Neurol 67:516–517. doi:10.1001/archneurol.2010.46

    Article  PubMed  Google Scholar 

  10. Laaksovirta H, Peuralinna T, Schymick JC et al (2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 9:978–985. doi:10.1016/S1474-4422(10)70184-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Iida A, Takahashi A, Deng M et al (2011) Replication analysis of SNPs on 9p21.2 and 19p13.3 with amyotrophic lateral sclerosis in East Asians. Neurobiol Aging 32(757):e13–e14. doi:10.1016/j.neurobiolaging.2010.12.011

    PubMed  Google Scholar 

  12. Diekstra FP, van Vught PWJ, van Rheenen W et al (2012) UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiol Aging 33(630):e3–e8. doi:10.1016/j.neurobiolaging.2011.10.029

    PubMed  Google Scholar 

  13. Kwee LC, Liu Y, Haynes C et al (2012) A high-density genome-wide association screen of sporadic ALS in US veterans. PLoS One 7:e32768. doi:10.1371/journal.pone.0032768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chiò A, Mora G, Restagno G et al (2013) UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study. Neurobiol Aging 34(357):e1–e5. doi:10.1016/j.neurobiolaging.2012.07.016

    PubMed  Google Scholar 

  15. Fogh I, Ratti A, Gellera C et al (2014) A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Hum Mol Genet 23:2220–2231. doi:10.1093/hmg/ddt587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chen X, Huang R, Chen Y et al (2014) Association analysis of four candidate genetic variants with sporadic amyotrophic lateral sclerosis in a Chinese population. Neurol Sci 35:1089–1095. doi:10.1007/s10072-014-1656-1

    Article  PubMed  Google Scholar 

  17. Forbes RB, Colville S, Swingler RJ (2001) Are the El Escorial and Revised El Escorial criteria for ALS reproducible? A study of inter-observer agreement. Amyotroph Lateral Scler Other Motor Neuron Disord 2:135–138

    Article  CAS  PubMed  Google Scholar 

  18. Gamez J, Corbera-Bellalta M, Nogales G et al (2006) Mutational analysis of the Cu/Zn superoxide dismutase gene in a Catalan ALS population: should all sporadic ALS cases also be screened for SOD1? J Neurol Sci 247:21–28

    Article  CAS  PubMed  Google Scholar 

  19. Syriani E, Salvans C, Salvadó M, Morales M, Lorenzo L, Cazorla S, Gamez J (2014) PFN1 mutations are also rare in the Catalan population with amyotrophic lateral sclerosis. J Neurol 261:2387–2392. doi:10.1007/s00415-014-7501-x

    Article  CAS  PubMed  Google Scholar 

  20. Gordon PH, Moore DH, Miller RG et al (2007) Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6:1045–1053. doi:10.1016/S1474-4422(07)70270-3

    Article  CAS  PubMed  Google Scholar 

  21. Miller RG, Moore DH, Forshew DA et al (2011) Phase II screening trial of lithium carbonate in amyotrophic lateral sclerosis: examining a more efficient trial design. Neurology 77:973–979. doi:10.1212/WNL.0b013e31822dc7a5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Simon NG, Turner MR, Vucic S, Al-Chalabi A, Shefner J, Lomen-Hoerth C, Kiernan MC (2014) Quantifying disease progression in amyotrophic lateral sclerosis. Ann Neurol. 76:643–657. doi:10.1002/ana.24273

    Article  PubMed Central  PubMed  Google Scholar 

  23. Creemers H, Grupstra H, Nollet F, van den Berg LH, Beelen A (2015) Prognostic factors for the course of functional status of patients with ALS: a systematic review. J Neurol 262:1407–1423. doi:10.1007/s00415-014-7564-8

    Article  CAS  PubMed  Google Scholar 

  24. Elamin M, Bede P, Montuschi A, Pender N, Chio A, Hardiman O (2015) Predicting prognosis in amyotrophic lateral sclerosis: a simple algorithm. J Neurol 262:1447–1454. doi:10.1007/s00415-015-7731-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gonzalez JR, Armengol L, Sole X et al (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23:654–655. doi:10.1093/bioinformatics/btm025

    Article  CAS  Google Scholar 

  26. Ballana E, Senserrich J, Pauls E et al (2010) ZNRD1 (zinc ribbon domain-containing 1) is a host cellular factor that influences HIV-1 replication and disease progression. Clin Infect Dis 50:1022–1032. doi:10.1086/651114

    Article  CAS  PubMed  Google Scholar 

  27. Lopez-Lopez A, Gamez J, Syriani E et al (2014) CX3CR1 is a modifying gene of survival and progression in amyotrophic lateral sclerosis. PLoS One 9:e96528. doi:10.1371/journal.pone.0096528

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gauderman WJ MJ (2006) QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. http://hydra.usc.edu/gxe. Accessed 20 May 2015

  29. Ahmeti KB, Ajroud-Driss S, Al-Chalabi A et al (2013) Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol Aging 34(357):e7–e19. doi:10.1016/j.neurobiolaging.2012.07.017

    PubMed  Google Scholar 

  30. Varoqueaux F, Sons MS, Plomp JJ, Brose N (2005) Aberrant morphology and residual transmitter release at the Munc13-deficient mouse neuromuscular synapse. Mol Cell Biol 25:5973–5984. doi:10.1128/MCB.25.14.5973-5984.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Augustin I, Rosenmund C, Südhof TC, Brose N (1999) Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400:457–461. doi:10.1038/22768

    Article  CAS  PubMed  Google Scholar 

  32. Olmos G, Lladó J (2014) Tumor necrosis factor : a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231. doi:10.1155/2014/861231

    Article  PubMed Central  PubMed  Google Scholar 

  33. Batlle M, Ferri L, Andrade C et al (2015) Astroglia-microglia cross talk during neurodegeneration in the rat hippocampus. Biomed Res Int 2015:102419. doi:10.1155/2015/102419

    Article  PubMed Central  PubMed  Google Scholar 

  34. Espinosa-Parrilla JF, Martínez-Moreno M, Gasull X et al (2015) The L-type voltage-gated calcium channel modulates microglial pro-inflammatory activity. Mol Cell Neurosci 64:104–115. doi:10.1016/j.mcn.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  35. Appel SH, Zhao W, Beers DR, Henkel JS (2011) The microglial-motoneuron dialogue in ALS. Acta Myol 30:4–8

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Beers DR, Henkel JS, Zhao W et al (2011) Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134:1293–1314. doi:10.1093/brain/awr074

    Article  PubMed Central  PubMed  Google Scholar 

  37. McCombe PA, Henderson RD (2011) The role of immune and inflammatory mechanisms in ALS. Curr Mol Med 11:246–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Boillée S, Yamanaka K, Lobsiger CS et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 80(312):1389–1392. doi:10.1126/science.1123511

    Article  Google Scholar 

  39. Henkel JS, Beers DR, Zhao W, Appel SH (2009) Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol 4:389–398. doi:10.1007/s11481-009-9171-5

    Article  PubMed  Google Scholar 

  40. Brettschneider J, Toledo JB, Van Deerlin VM et al (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7:e39216. doi:10.1371/journal.pone.0039216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Corcia P, Tauber C, Vercoullie J et al (2012) Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One 7:e52941. doi:10.1371/journal.pone.0052941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rock RB, Hu S, Deshpande A et al (2005) Transcriptional response of human microglial cells to interferon-gamma. Genes Immun 6:712–719. doi:10.1038/sj.gene.6364246

    CAS  PubMed  Google Scholar 

  43. Yoshino T, Tabunoki H, Sugiyama S et al (2011) Non-phosphorylated FTY720 induces apoptosis of human microglia by activating SREBP2. Cell Mol Neurobiol 31:1009–1020. doi:10.1007/s10571-011-9698-x

    Article  CAS  PubMed  Google Scholar 

  44. Mori R, Ikematsu K, Kitaguchi T et al (2011) Release of TNF-α from macrophages is mediated by small GTPase Rab37. Eur J Immunol 41:3230–3239. doi:10.1002/eji.201141640

    Article  CAS  PubMed  Google Scholar 

  45. Pradas J, Puig T, Rojas-García R, Viguera ML, Gich I, Logroscino G (2013) Amyotrophic lateral sclerosis in Catalonia: a population based study. Amyotroph Lateral Scler Frontotemporal Degener 14(4):278–283. doi:10.3109/21678421.2012.749915

    Article  PubMed  Google Scholar 

  46. Ingre C, Roos PM, Piehl F et al (2015) Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol 7:181–193. doi:10.2147/CLEP.S37505

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the patients and their relatives for their cooperation. The authors are grateful to the Spanish National DNA Bank (Salamanca, Spain) for supplying control samples and Dr. Josep Saura and Marta Pulido for their results of Munc13-1 gene expression in mice. JG is the recipient of a grant from the Spanish Fondo de Investigaciones Sanitarias (PI10-01070 and FIS PI13-01272-FEDER), and an Interlaken Research Awards Program. This work was supported by grant IPT-2012-0614-010000 from the Ministerio de Economia y Competitividad and by grant 2014SGR1115 from the Generalitat de Catalunya to MJR, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Manuel Vidal-Taboada or Josep Gamez.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical statement

This genetic study was approved by the local IRBs at the Vall d’Hebron Research Institute and the Spanish National DNA Bank. The study has been conducted according to the principles expressed in the Declaration of Helsinki. All patients gave their informed written consent to participation in the study prior to their inclusion in the study, and a blood sample for genetic analysis was obtained from all of them.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal-Taboada, J.M., Lopez-Lopez, A., Salvado, M. et al. UNC13A confers risk for sporadic ALS and influences survival in a Spanish cohort. J Neurol 262, 2285–2292 (2015). https://doi.org/10.1007/s00415-015-7843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7843-z

Keywords

Navigation