Skip to main content

Advertisement

Log in

Stimulation of ACE2/ANG(1–7)/Mas Axis by Diminazene Ameliorates Alzheimer’s Disease in the D-Galactose-Ovariectomized Rat Model: Role of PI3K/Akt Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Overactivation of angiotensin-converting enzyme/angiotensin 2/angiotensin receptor-1 (ACE/Ang2/AT1) axis provokes amyloid-β-induced apoptosis and neurodegeneration in Alzheimer’s disease (AD). Moreover, activation of AT1 impairs the survival pathway phosphoinositide 3-kinase/protein kinase B (PI3K/Akt). Interestingly, the coupling between ACE2/Ang(1–7)/Mas receptor (MasR) axis and PI3K/Akt activation opposes AT1-induced apoptosis. However, the effect of in vivo stimulation of MasR against AD and its correlation to PI3K/Akt is not yet elucidated. Thus, the present study aimed to investigate the relationship between PI3K/Akt pathway and the activation of ACE2/MasR in the AD model of D-galactose-ovariectomized rats. AD features were induced following 8-week injection of D-galactose (150 mg/kg, i.p.) in ovariectomized female rats. The ACE2 activator dimenazine (15 mg/kg, i.p.) was daily administered for 2 months. DIZE administration boosted the hippocampal expression of ACE2 and Mas receptors while suppressing AT1 receptor. Notably, dimenazine enhanced the expression of phosphorylated survival factors (PI3K, Akt, signal transducer, and activator of transcription-3) and neuroplasticity proteins such as cyclic adenosine monophosphate-responsive element-binding protein and brain-derived neurotrophic factor along with nicotinic and glutamatergic receptors. Such effects were accompanied by suppressing phosphorylated tau and glycogen synthase kinase3β along with caspase-3, cytochrome-c, nuclear factor kappa B, tumor necrosis factor alpha, and glial fibrillary acidic protein contents. Dimenazine ameliorated the histopathological damage observed in D-galactose-ovariectomized rats and improved their learning and recognition memory in Morris water maze and novel object recognition tests. In conclusion, dimenazine-induced stimulation of ACE2/Ang(1–7)/Mas axis subdues cognitive deficits in AD most probably through activation of PI3K/Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-β

ACE:

Angiotensin-converting enzyme

ACE2:

Angiotensin-converting enzyme 2

Ang(1–7):

Angiotensin (1–7)

AT1:

Angiotensin receptor subtype-1

BDNF:

Brain-derived neurotrophic factor

Casp-3:

Caspase-3

CREB:

cAMP-responsive element-binding protein

CYC:

Cytochrome-c

DIZE:

Diminazene

D-Gal:

D-galactose

GFAP:

Glial fibrillary acidic protein

GSK3β:

Glycogen synthase kinase 3β

p-STAT3:

Phosphorylated signal transducer and activator of transcription-3

PI3K:

Phosphoinositide 3-kinase

LTP:

Long-term potentiation

MasR:

Mas receptor

NF-κB p65:

Nuclear factor Kappa B p65

RAS:

Renin angiotensin system

Akt/PKB:

Protein kinase B

TNF-α:

Tumor necrosis factor alpha

p-tau:

Phosphorylated tau protein

MWM:

Morris water maze

NOR:

Novel Object recognition

References

  1. Ashby EL, Kehoe PG (2013) Current status of renin-aldosterone angiotensin system-targeting anti-hypertensive drugs as therapeutic options for Alzheimer's disease. Expert Opin Investig Drugs 22:1229–1242. https://doi.org/10.1517/13543784.2013.812631

    Article  PubMed  CAS  Google Scholar 

  2. Muthuraman A, Kaur P (2016) Renin-angiotensin-aldosterone system: a current drug target for the management of neuropathic pain. Curr Drug Targets 17:178–195

    Article  PubMed  CAS  Google Scholar 

  3. Miners JS, Palmer JC, Tayler H, Palmer LE, Ashby E, Kehoe PG, Love S (2014) Abeta degradation or cerebral perfusion? Divergent effects of multifunctional enzymes. Front Aging Neurosci 6:238. https://doi.org/10.3389/fnagi.2014.00238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, Xia H, Lazartigues E et al (2014) Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience 273:39–51. https://doi.org/10.1016/j.neuroscience.2014.04.060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Goel R, Bhat SA, Hanif K, Nath C, Shukla R (2017) Angiotensin II receptor blockers attenuate lipopolysaccharide-induced memory impairment by modulation of NF-kappaB-mediated BDNF/CREB expression and apoptosis in spontaneously hypertensive rats. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0450-5

  6. Villapol S, Saavedra JM (2015) Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens 28:289–299. https://doi.org/10.1093/ajh/hpu197

    Article  PubMed  CAS  Google Scholar 

  7. Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, Dickinson B, Scullion S et al (2011) Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci 14:545–547. https://doi.org/10.1038/nn.2785

    Article  PubMed  CAS  Google Scholar 

  8. Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease. Cell Signal 23:1515–1527. https://doi.org/10.1016/j.cellsig.2011.05.004

    Article  PubMed  CAS  Google Scholar 

  9. Shi J, Gu JH, Dai CL, Gu J, Jin X, Sun J, Iqbal K, Liu F et al (2015) O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. Sci Rep 5:14500. https://doi.org/10.1038/srep14500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zuo D, Lin L, Liu Y, Wang C, Xu J, Sun F, Li L, Li Z et al (2016) Baicalin attenuates ketamine-induced neurotoxicity in the developing rats: involvement of PI3K/Akt and CREB/BDNF/Bcl-2 pathways. Neurotox Res 30:159–172. https://doi.org/10.1007/s12640-016-9611-y

    Article  PubMed  CAS  Google Scholar 

  11. Hunsberger J, Austin DR, Henter ID, Chen G (2009) The neurotrophic and neuroprotective effects of psychotropic agents. Dialogues Clin Neurosci 11:333–348

    PubMed  PubMed Central  Google Scholar 

  12. Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M, Nabeshima T (2002) CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res 133:135–141

    Article  PubMed  CAS  Google Scholar 

  13. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322. https://doi.org/10.1038/nrneurol.2009.54

    Article  PubMed  CAS  Google Scholar 

  14. Barco A, Marie H (2011) Genetic approaches to investigate the role of CREB in neuronal plasticity and memory. Mol Neurobiol 44:330–349. https://doi.org/10.1007/s12035-011-8209-x

    Article  PubMed  CAS  Google Scholar 

  15. Ongali B, Nicolakakis N, Tong XK, Aboulkassim T, Papadopoulos P, Rosa-Neto P, Lecrux C, Imboden H et al (2014) Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer’s disease model. Neurobiol Dis 68:126–136. https://doi.org/10.1016/j.nbd.2014.04.018

    Article  PubMed  CAS  Google Scholar 

  16. Bihl JC, Zhang C, Zhao Y, Xiao X, Ma X, Chen Y, Chen S, Zhao B et al (2015) Angiotensin-(1-7) counteracts the effects of Ang II on vascular smooth muscle cells, vascular remodeling and hemorrhagic stroke: role of the NFsmall ka, CyrillicB inflammatory pathway. Vascul Pharmacol 73:115–123. https://doi.org/10.1016/j.vph.2015.08.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Liu S, Liu J, Miura Y, Tanabe C, Maeda T, Terayama Y, Turner AJ, Zou K et al (2014) Conversion of Abeta43 to Abeta40 by the successive action of angiotensin-converting enzyme 2 and angiotensin-converting enzyme. J Neurosci Res 92:1178–1186. https://doi.org/10.1002/jnr.23404

    Article  PubMed  CAS  Google Scholar 

  18. Xie W, Zhu D, Ji L, Tian M, Xu C, Shi J (2014) Angiotensin-(1-7) improves cognitive function in rats with chronic cerebral hypoperfusion. Brain Res 1573:44–53. https://doi.org/10.1016/j.brainres.2014.05.019

    Article  PubMed  CAS  Google Scholar 

  19. Jiang T, Gao L, Guo J, Lu J, Wang Y, Zhang Y (2012) Suppressing inflammation by inhibiting the NF-kappaB pathway contributes to the neuroprotective effect of angiotensin-(1-7) in rats with permanent cerebral ischaemia. Br J Pharmacol 167:1520–1532. https://doi.org/10.1111/j.1476-5381.2012.02105.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lazaroni TL, Raslan AC, Fontes WR, de Oliveira ML, Bader M, Alenina N, Moraes MF, Dos Santos RA et al (2012) Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem 97:113–123. https://doi.org/10.1016/j.nlm.2011.10.003

    Article  PubMed  CAS  Google Scholar 

  21. Zhao J, Liu E, Li G, Qi L, Li J, Yang W (2015) Effects of the angiotensin-(1-7)/Mas/PI3K/Akt/nitric oxide axis and the possible role of atrial natriuretic peptide in an acute atrial tachycardia canine model. J Renin Angiotensin Aldosterone Syst 16:1069–1077. https://doi.org/10.1177/1470320314543723

    Article  PubMed  CAS  Google Scholar 

  22. Gironacci MM, Cerniello FM, Longo Carbajosa NA, Goldstein J, Cerrato BD (2014) Protective axis of the renin-angiotensin system in the brain. Clin Sci (Lond) 127:295–306. https://doi.org/10.1042/CS20130450

    Article  CAS  Google Scholar 

  23. Liu L, Lu Y, Kong H, Li L, Marshall C, Xiao M, Ding J, Gao J et al (2012) Aquaporin-4 deficiency exacerbates brain oxidative damage and memory deficits induced by long-term ovarian hormone deprivation and D-galactose injection. Int J Neuropsychopharmacol 15:55–68. https://doi.org/10.1017/S1461145711000022

    Article  PubMed  CAS  Google Scholar 

  24. Kim TW, Kim CS, Kim JY, Kim CJ, Seo JH (2016) Combined exercise ameliorates ovariectomy-induced cognitive impairment by enhancing cell proliferation and suppressing apoptosis. Menopause 23:18–26. https://doi.org/10.1097/GME.0000000000000486

    Article  PubMed  Google Scholar 

  25. Rehman SU, Shah SA, Ali T, Chung JI, Kim MO (2017) Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol 54:255–271. https://doi.org/10.1007/s12035-015-9604-5

    Article  PubMed  CAS  Google Scholar 

  26. Kulemina LV, Ostrov DA (2011) Prediction of off-target effects on angiotensin-converting enzyme 2. J Biomol Screen 16:878–885. https://doi.org/10.1177/1087057111413919

    Article  PubMed  CAS  Google Scholar 

  27. Bennion DM, Haltigan EA, Irwin AJ, Donnangelo LL, Regenhardt RW, Pioquinto DJ, Purich DL, Sumners C (2015) Activation of the neuroprotective angiotensin-converting enzyme 2 in rat ischemic stroke. Hypertension 66:141–148. https://doi.org/10.1161/HYPERTENSIONAHA.115.05185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mecca AP, Regenhardt RW, O'Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C (2011) Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol 96:1084–1096. https://doi.org/10.1113/expphysiol.2011.058578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. de Ceglia R, Chaabane L, Biffi E, Bergamaschi A, Ferrigno G, Amadio S, Del Carro U, Mazzocchi N et al (2015) Down-sizing of neuronal network activity and density of presynaptic terminals by pathological acidosis are efficiently prevented by diminazene aceturate. Brain Behav Immun 45:263–276. https://doi.org/10.1016/j.bbi.2014.12.003

    Article  PubMed  CAS  Google Scholar 

  30. Wang L, de Kloet AD, Pati D, Hiller H, Smith JA, Pioquinto DJ, Ludin JA, Oh SP et al (2016) Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 105:114–123. https://doi.org/10.1016/j.neuropharm.2015.12.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT (2015) Resveratrol decreases the insoluble Abeta1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 310:641–649. https://doi.org/10.1016/j.neuroscience.2015.10.006

    Article  PubMed  CAS  Google Scholar 

  32. Khajuria DK, Razdan R, Mahapatra DR (2012) Description of a new method of ovariectomy in female rats. Rev Bras Reumatol 52:462–470

    Article  PubMed  Google Scholar 

  33. Alawdi SH, El-Denshary ES, Safar MM, Eidi H, David MO, Abdel-Wahhab MA (2017) Neuroprotective effect of nanodiamond in Alzheimer’s disease rat model: a pivotal role for modulating NF-kappaB and STAT3 signaling. Mol Neurobiol 54:1906–1918. https://doi.org/10.1007/s12035-016-9762-0

    Article  PubMed  CAS  Google Scholar 

  34. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. https://doi.org/10.1007/s10339-011-0430-z

    Article  PubMed  CAS  Google Scholar 

  35. Pandareesh MD, Anand T, Khanum F (2016) Cognition enhancing and neuromodulatory propensity of Bacopa monniera extract against scopolamine induced cognitive impairments in rat hippocampus. Neurochem Res 41:985–999. https://doi.org/10.1007/s11064-015-1780-1

    Article  PubMed  CAS  Google Scholar 

  36. Arsad SS, Esa NM, Hamzah H (2014) Histopathologic changes in liver and kidney tissues from male Sprague Dawley rats treated with Rhaphidophora Decursiva (Roxb.) Schott extract. J Cytol Histol S4:001. https://doi.org/10.4172/2157-7099.S4-001

    Article  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  38. Shen J, Wu J (2015) Nicotinic cholinergic mechanisms in Alzheimer’s disease. Int Rev Neurobiol 124:275–292. https://doi.org/10.1016/bs.irn.2015.08.002

    Article  PubMed  Google Scholar 

  39. Buckingham SD, Jones AK, Brown LA, Sattelle DB (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 61:39–61. https://doi.org/10.1124/pr.108.000562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wang C, Chen T, Li G, Zhou L, Sha S, Chen L (2015) Simvastatin prevents beta-amyloid(25-35)-impaired neurogenesis in hippocampal dentate gyrus through alpha7nAChR-dependent cascading PI3K-Akt and increasing BDNF via reduction of farnesyl pyrophosphate. Neuropharmacology 97:122–132. https://doi.org/10.1016/j.neuropharm.2015.05.020

    Article  PubMed  CAS  Google Scholar 

  41. Ma Y, Sun X, Li J, Jia R, Yuan F, Wei D, Jiang W (2017) Melatonin alleviates the epilepsy-associated impairments in hippocampal LTP and spatial learning through rescue of surface GluR2 expression at hippocampal CA1 synapses. Neurochem Res 42:1438–1448. https://doi.org/10.1007/s11064-017-2200-5

    Article  PubMed  CAS  Google Scholar 

  42. Wayner MJ, Armstrong DL, Phelix CF (1996) Nicotine blocks angiotensin II inhibition of LTP in the dentate gyrus. Peptides 17:1127–1133

    Article  PubMed  CAS  Google Scholar 

  43. Olmos G, Llado J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014:861231. https://doi.org/10.1155/2014/861231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Liu S, Lau L, Wei J, Zhu D, Zou S, Sun HS, Fu Y, Liu F et al (2004) Expression of Ca(2+)-permeable AMPA receptor channels primes cell death in transient forebrain ischemia. Neuron 43:43–55. https://doi.org/10.1016/j.neuron.2004.06.017

    Article  PubMed  Google Scholar 

  45. Rodriguez-Perez AI, Valenzuela R, Villar-Cheda B, Guerra MJ, Lanciego JL, Labandeira-Garcia JL (2010) Estrogen and angiotensin interaction in the substantia nigra. Relevance to postmenopausal Parkinson’s disease. Exp Neurol 224:517–526. https://doi.org/10.1016/j.expneurol.2010.05.015

    Article  PubMed  CAS  Google Scholar 

  46. Pernomian L, Pernomian L, Gomes MS, da Silva CH (2015) Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists. Eur J Pharmacol 769:143–146. https://doi.org/10.1016/j.ejphar.2015.11.009

    Article  PubMed  CAS  Google Scholar 

  47. Gouveia TL, Frangiotti MI, de Brito JM, de Castro Neto EF, Sakata MM, Febba AC, Casarini DE, Amado D et al (2012) The levels of renin-angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int 61:54–62. https://doi.org/10.1016/j.neuint.2012.04.012

    Article  PubMed  CAS  Google Scholar 

  48. Freund M, Walther T, von Bohlen Und HO (2012) Immunohistochemical localization of the angiotensin-(1-7) receptor Mas in the murine forebrain. Cell Tissue Res 348:29–35. https://doi.org/10.1007/s00441-012-1354-3

    Article  PubMed  CAS  Google Scholar 

  49. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258. https://doi.org/10.14670/HH-25.237

    Article  PubMed  CAS  Google Scholar 

  50. Shi HR, Zhu LQ, Wang SH, Liu XA, Tian Q, Zhang Q, Wang Q, Wang JZ (2008) 17beta-estradiol attenuates glycogen synthase kinase-3beta activation and tau hyperphosphorylation in Akt-independent manner. J Neural Transm (Vienna) 115:879–888. https://doi.org/10.1007/s00702-008-0021-z

    Article  CAS  Google Scholar 

  51. Tian M, Zhu D, Xie W, Shi J (2012) Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett 586:3737–3745. https://doi.org/10.1016/j.febslet.2012.09.004

    Article  PubMed  CAS  Google Scholar 

  52. Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S (2014) Dietary regulation of PI3K/AKT/GSK-3beta pathway in Alzheimer's disease. Alzheimers Res Ther 6:35. https://doi.org/10.1186/alzrt265

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871. https://doi.org/10.1016/j.cell.2010.03.053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Garcia-Mesa Y, Pareja-Galeano H, Bonet-Costa V, Revilla S, Gomez-Cabrera MC, Gambini J, Gimenez-Llort L, Cristofol R et al (2014) Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology 45:154–166. https://doi.org/10.1016/j.psyneuen.2014.03.021

    Article  PubMed  CAS  Google Scholar 

  55. Wang XL, Iwanami J, Min LJ, Tsukuda K, Nakaoka H, Bai HY, Shan BS, Kan-No H et al (2016) Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech Dis 2:16024. https://doi.org/10.1038/npjamd.2016.24

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78:1219–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Walton MR, Dragunow I (2000) Is CREB a key to neuronal survival? Trends Neurosci 23:48–53

    Article  PubMed  CAS  Google Scholar 

  58. Park SJ, Shin EJ, Min SS, An J, Li Z, Hee CY, Hoon JJ, Bach JH et al (2013) Inactivation of JAK2/STAT3 signaling axis and downregulation of M1 mAChR cause cognitive impairment in klotho mutant mice, a genetic model of aging. Neuropsychopharmacology 38:1426–1437. https://doi.org/10.1038/npp.2013.39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012:756357. https://doi.org/10.1100/2012/756357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xu Y, Sheng H, Tang Z, Lu J, Ni X (2015) Inflammation and increased IDO in hippocampus contribute to depression-like behavior induced by estrogen deficiency. Behav Brain Res 288:71–78. https://doi.org/10.1016/j.bbr.2015.04.017

    Article  PubMed  CAS  Google Scholar 

  61. Souza LK, Nicolau LA, Sousa NA, Araujo TS, Sousa FB, Costa DS, Souza FM, Pacifico DM et al (2016) Diminazene aceturate, an angiotensin-converting enzyme II activator, prevents gastric mucosal damage in mice: role of the angiotensin-(1-7)/Mas receptor axis. Biochem Pharmacol 112:50–59. https://doi.org/10.1016/j.bcp.2016.05.010

    Article  PubMed  CAS  Google Scholar 

  62. Tao L, Qiu Y, Fu X, Lin R, Lei C, Wang J, Lei B (2016) Angiotensin-converting enzyme 2 activator diminazene aceturate prevents lipopolysaccharide-induced inflammation by inhibiting MAPK and NF-kappaB pathways in human retinal pigment epithelium. J Neuroinflammation 13:35. https://doi.org/10.1186/s12974-016-0489-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60

    Article  PubMed  CAS  Google Scholar 

  64. Stamouli EC, Politis AM (2016) Pro-inflammatory cytokines in Alzheimer’s disease. Psychiatriki 27:264–275. https://doi.org/10.22365/jpsych.2016.274.264

    Article  PubMed  CAS  Google Scholar 

  65. Bennion DM, Haltigan E, Regenhardt RW, Steckelings UM, Sumners C (2015) Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr Hypertens Rep 17:3. https://doi.org/10.1007/s11906-014-0512-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sriramula S, Cardinale JP, Lazartigues E, Francis J (2011) ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res 92:401–408. https://doi.org/10.1093/cvr/cvr242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chiang CS, Stalder A, Samimi A, Campbell IL (1994) Reactive gliosis as a consequence of interleukin-6 expression in the brain: studies in transgenic mice. Dev Neurosci 16:212–221

    Article  PubMed  CAS  Google Scholar 

  68. Regenhardt RW, Desland F, Mecca AP, Pioquinto DJ, Afzal A, Mocco J, Sumners C (2013) Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology 71:154–163. https://doi.org/10.1016/j.neuropharm.2013.03.025

    Article  PubMed  CAS  Google Scholar 

  69. Liu Z, Huang XR, Chen HY, Penninger JM, Lan HY (2012) Loss of angiotensin-converting enzyme 2 enhances TGF-beta/Smad-mediated renal fibrosis and NF-kappaB-driven renal inflammation in a mouse model of obstructive nephropathy. Lab Invest 92:650–661. https://doi.org/10.1038/labinvest.2012.2

    Article  PubMed  CAS  Google Scholar 

  70. Xu S, Zhong M, Zhang L, Wang Y, Zhou Z, Hao Y, Zhang W, Yang X et al (2009) Overexpression of Tfam protects mitochondria against beta-amyloid-induced oxidative damage in SH-SY5Y cells. FEBS J 276:3800–3809. https://doi.org/10.1111/j.1742-4658.2009.07094.x

    Article  PubMed  CAS  Google Scholar 

  71. Kim SM, Kim YG, Jeong KH, Lee SH, Lee TW, Ihm CG, Moon JY (2012) Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS One 7:e39739. https://doi.org/10.1371/journal.pone.0039739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Aguirre-Rueda D, Guerra-Ojeda S, Aldasoro M, Iradi A, Obrador E, Ortega A, Mauricio MD, Vila JM et al (2015) Astrocytes protect neurons from Abeta1-42 peptide-induced neurotoxicity increasing TFAM and PGC-1 and decreasing PPAR-gamma and SIRT-1. Int J Med Sci 12:48–56. https://doi.org/10.7150/ijms.10035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang M, Ye Y, Cong J, Pu D, Liu J, Hu G, Wu J (2013) Regulation of STAT3 by miR-106a is linked to cognitive impairment in ovariectomized mice. Brain Res 1503:43–52. https://doi.org/10.1016/j.brainres.2013.01.052

    Article  PubMed  CAS  Google Scholar 

  74. Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA et al (2009) Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 179:1048–1054. https://doi.org/10.1164/rccm.200811-1678OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sharma S, Yang B, Xi X, Grotta JC, Aronowski J, Savitz SI (2011) IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways. Brain Res 1373:189–194. https://doi.org/10.1016/j.brainres.2010.11.096

    Article  PubMed  CAS  Google Scholar 

  76. Shravah J, Wang B, Pavlovic M, Kumar U, Chen DD, Luo H, Ansley DM (2014) Propofol mediates signal transducer and activator of transcription 3 activation and crosstalk with phosphoinositide 3-kinase/AKT. JAKSTAT 3:e29554. https://doi.org/10.4161/jkst.29554

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang ZH, Yu LJ, Hui XC, Wu ZZ, Yin KL, Yang H, Xu Y (2014) Hydroxy-safflor yellow A attenuates Abeta(1)(-)(4)(2)-induced inflammation by modulating the JAK2/STAT3/NF-kappaB pathway. Brain Res 1563:72–80. https://doi.org/10.1016/j.brainres.2014.03.036

    Article  PubMed  CAS  Google Scholar 

  78. Heberden C (2017) Sex steroids and neurogenesis. Biochem Pharmacol 141:56–62. https://doi.org/10.1016/j.bcp.2017.05.019

    Article  PubMed  CAS  Google Scholar 

  79. Snigdha S, Smith ED, Prieto GA, Cotman CW (2012) Caspase-3 activation as a bifurcation point between plasticity and cell death. Neurosci Bull 28:14–24. https://doi.org/10.1007/s12264-012-1057-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A (2011) Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis. Am J Physiol Lung Cell Mol Physiol 301:L269–L274. https://doi.org/10.1152/ajplung.00222.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed S. Kamel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, A.S., Abdelkader, N.F., Abd El-Rahman, S.S. et al. Stimulation of ACE2/ANG(1–7)/Mas Axis by Diminazene Ameliorates Alzheimer’s Disease in the D-Galactose-Ovariectomized Rat Model: Role of PI3K/Akt Pathway. Mol Neurobiol 55, 8188–8202 (2018). https://doi.org/10.1007/s12035-018-0966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0966-3

Keywords

Navigation