Skip to main content

Advertisement

Log in

17β-estradiol attenuates glycogen synthase kinase-3β activation and tau hyperphosphorylation in Akt-independent manner

  • Alzheimer's Disease and Related Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

An Erratum to this article was published on 06 April 2010

Abstract

Decline of estrogen is associated with high incidence of Alzheimer’s disease (AD) characterized pathologically with tau hyperphosphorylation, and glycogen synthase kinase-3β (GSK-3β) is a major tau kinase. However, the role of estrogen on GSK3β-induced tau hyperphosphorylation is elusive. Here, we treated N2a cells with wortmannin (Wort) and GF-109203X (GFX) or gene transfection to activate GSK-3β and to induce tau hyperphosphorylation and then the effects of 17β-estradiol (βE2) on tau phosphorylation and GSK-3β activity were studied. We found that βE2 could attenuate tau hyperphosphorylation at multiple AD-related sites, including Ser396/404, Thr231, Thr205, and Ser199/202, induced by Wort/GFX or transient overexpression of GSK-3β. Simultaneously, it increased the level of Ser9-phosphorylated (inactive) GSK-3β. To study whether the protective effect of βE2 on GSK-3β and tau phosphorylation involves protein kinase B (Akt), an upstream effector of GSK-3, we transiently expressed the dominant negative Akt (dnAkt) in the cells. We found that βE2 could attenuate Wort/GFX-induced GSK-3β activation and tau hyperphosphorylation with Akt-independent manner. It suggests that βE2 may arrest AD-like tau hyperphosphorylation by directly targeting GSK-3β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

βE2:

17β-estradiol

AD:

Alzheimer’s disease

GSK-3:

Glycogen synthase kinase-3

Akt:

Protein kinase B

Wort:

Wortmannin

GFX:

GF-109203X

References

  • Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M (1997) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7:776–789

    Article  PubMed  CAS  Google Scholar 

  • Alexaki VI, Charalampopoulos I, Kampa M, Vassalou H, Theodoropoulos P, Stathopoulos EN, Hatzoglou A, Gravanis A, Castanas E (2004) Estrogen exerts neuroprotective effects via membrane estrogen receptors and rapid Akt/NOS activation. FASEB J 18:1594–1596

    PubMed  CAS  Google Scholar 

  • Alvarez-de-la-Rosa M, Silva I, Nilsen J, Perez MM, Garcia-Segura LM, Avila J, Naftolin F (2005) Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer’s disease. Ann NY Acad Sci 1052:210–224

    Article  PubMed  CAS  Google Scholar 

  • Arriagada PV, Growdon JH, Hedley-Whyte ET, Hugman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    PubMed  CAS  Google Scholar 

  • Asthana S, Craft S, Baker LD, Raskind MA, Birnbaum RS, Lofgreen CP, Veith RC, Plymate SR (1999) Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 24:657–677

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E, Bohl J, Reintjes R (1996) Age, neurofibrillary changes, abeta-amyloid and the onset of alzheimer’s disease. Neurosci Lett 210:87–90

    Article  PubMed  CAS  Google Scholar 

  • Cardona-Gomez GP, Mendez P, Garcia-Segura LM (2002) Synergistic interaction of estradiol and insulin-like growth factor-I in the activation of PI3K/Akt signaling in the adult rat hypothalamus. Brain Res Mol Brain Res 107:80–88

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Bach JH, Lee MW, Kim HS, Kim YS, Kim KY, Choo KY, Choi SH, Park CH, Lee SH, Suh YH, Kim SS, Lee WB (2001) Estrogen attenuates cell death induced by carboxy-terminal fragment of amyloid precursor protein in PC12 through a receptor-dependent pathway. J Neurosci Res 65:403–407

    Article  PubMed  CAS  Google Scholar 

  • Chang D, Kwan J, Timiras PS (1997) Estrogens influence growth, maturation, and amyloid beta-peptide production in neuroblastoma cells and in a beta-APP transfected kidney 293 cell line. Adv Exp Med Biol 429:261–271

    PubMed  CAS  Google Scholar 

  • Cordey M, Gundimeda U, Gopalakrishna R, Pike CJ (2003) Estrogen activates protein kinase C In neurons: role in neuroprotection. J Neurochem 84:1340–1348

    Article  PubMed  CAS  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789

    Article  PubMed  CAS  Google Scholar 

  • Cui QL, Zheng WH, Quirion R, Almazan G (2005) Inhibition of Src-like kinases reveals Akt-dependent and -independent pathways in insulin-like growth factor I-mediated oligodendrocyte progenitor survival. J Biol Chem 280:8918–8928

    Article  PubMed  CAS  Google Scholar 

  • D’Astous M, Mendez P, Morissette M, Garcia-Segura LM, Di Paolo T (2006) Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol in the striatum of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mice. Mol Pharmacol 69:1492–1498

    Article  PubMed  Google Scholar 

  • Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267

    Article  PubMed  CAS  Google Scholar 

  • Featy MB, Dickson DW (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 40:139–148

    Article  Google Scholar 

  • Ghisletti S, Meda C, Maggi A, Vegeto E (2005) 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 25:2957–2968

    Article  PubMed  CAS  Google Scholar 

  • Goodenough S, Schleusner D, Pietrzik C, Skutella T, Behl C (2005) Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. Neuroscience 132:581–589

    Article  PubMed  CAS  Google Scholar 

  • Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog Neurobiol 65:391–426

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986a) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986b) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Heikkinen T, Kalesnykas G, Rissanen A, Tapiola T, Iivonen S, Wang J, Chaudhuri J, Tanila H, Miettinen R, Puolivali J (2004) Estrogen treatment improves spatial learning in APP + PS1 mice but does not affect beta amyloid accumulation and plaque formation. Exp Neurol 187:105–117

    Article  PubMed  CAS  Google Scholar 

  • Henderson VW, Paganini-Hill A, Emanuel CK, Dunn ME, Buckwalter JG (1994) Estrogen replacement therapy in older women. Comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 51:896–900

    PubMed  CAS  Google Scholar 

  • Hernandez F, Borrell J, Guaza C, Avila J, Lucas JJ (2002) Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J Neurochem 83:1529–1533

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Lee VM, Trojanowski JQ (2002) Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2:131–150

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S (2002) The aging brain. Changes in the neuronal insulin/insulin receptor signal transduction cascade trigger late-onset sporadic Alzheimer disease (SAD). J Neural Transm 109:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Iqbal K, Grundke-Iqbal I, Smith AI, George L, Tung YC, Zaidi T (1989) Identification and localization of a tau peptide to paired helical filaments of Alzheimer’s disease. Proc Natl Acad Sci USA 86:5646–5650

    Article  PubMed  CAS  Google Scholar 

  • Kelly MJ, Qiu J, Wagner EJ, Ronnekleiv OK (2002) Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS). J Steroid Biochem Mol Biol 83:187–193

    Article  PubMed  CAS  Google Scholar 

  • Koh JY, Yang LL, Cotman CW (1990) Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 533:315–320

    Article  PubMed  CAS  Google Scholar 

  • Lee VM, Balin BJ, Otvos LJ, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251:675–678

    Article  PubMed  CAS  Google Scholar 

  • Lesort M, Jope RS, Johnson GV (1999) Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem 72:576–584

    Article  PubMed  CAS  Google Scholar 

  • Levin-Allerhand JA, Lominska CE, Wang J, Smith JD (2002) 17Alpha-estradiol and 17beta-estradiol treatments are effective in lowering cerebral amyloid-beta levels in AbetaPPSWE transgenic mice. J Alzheimers Dis 4:449–457

    PubMed  CAS  Google Scholar 

  • Li X, Lu F, Tian Q, Yang Y, Wang Q, Wang JZ (2006) Activation of glycogen synthase kinase-3 induces Alzheimer-like tau hyperphosphorylation in rat hippocampus slices in culture. J Neural Transm 113:93–102

    Article  PubMed  CAS  Google Scholar 

  • Liu SJ, Zhang AH, Li HL, Wang Q, Deng HM, Netzer WJ, Xu HX, Wang JZ (2003) Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem 87:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Gastard M, Verina T, Bora S, Mouton PR, Koliatsos VE (2001) Estrogens modulate experimentally induced apoptosis of granule cells in the adult hippocampus. J Comp Neurol 441:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27–39

    Article  PubMed  CAS  Google Scholar 

  • Ma ZG, Wang J, Jiang H, Xie JX, Chen L (2005) C31 enhances voltage-gated calcium channel currents in undifferentiated PC12 cells. Neurosci Lett 382:102–105

    Article  PubMed  CAS  Google Scholar 

  • Mendez P, Garcia-Segura LM (2006) Phosphatidylinositol 3-kinase and glycogen synthase kinase 3 regulate estrogen receptor-mediated transcription in neuronal cells. Endocrinology 147:3027–3029

    Article  PubMed  CAS  Google Scholar 

  • Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG, Denton RM (1997) Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J Biol Chem 272:7713–7719

    Article  PubMed  CAS  Google Scholar 

  • Nadal A, Rovira JM, Laribi O, Leon-quinto T, Andreu E, Ripoll C, Soria B (1998) Rapid insulinotropic effect of 17beta-estradiol via a plasma membrane receptor. FASEB J 12:1341–1348

    PubMed  CAS  Google Scholar 

  • Nakayama T, Sawada T (2002) Involvement of microtubule integrity in memory impairment caused by colchicine. Pharmacol Biochem Behav 71:119–138

    Article  PubMed  CAS  Google Scholar 

  • O’Neill K, Chen S, Diaz Brinton R (2004) Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol 188:268–278

    Article  PubMed  Google Scholar 

  • Paganini-Hill A, Henderson VW (1994) Estrogen deficiency and risk of Alzheimer’s disease in women. Am J Epidemiol 140:256–261

    PubMed  CAS  Google Scholar 

  • Pap M, Cooper GM (1998) Role of glycogen synthase kinase-3β in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 273:19929–19932

    Article  PubMed  CAS  Google Scholar 

  • Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58:1010–1019

    Article  PubMed  CAS  Google Scholar 

  • Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D, Yan J, Sanghera J, Walsh MP, Dedhar S (2001) Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 276:27462–27469

    Article  PubMed  CAS  Google Scholar 

  • Reynolds CH, Betts JC, Blackstock WP, Nebreda AR, Anderton BH (2000) Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry: differences in vitro between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and P38, and glycogen synthase kinase-3beta. J Neurochem 74:1587–1595

    Article  PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P (2006) Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 96:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Santanam N, Shern-Brewer R, McClatchey R, Castellano PZ, Murphy AA, Voelkel S, Parthasarathy S (1998) Estradiol as an antioxidant: incompatible with its physiological concentrations and function. J Lipid Res 39:2111–2118

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53:438–447

    Article  PubMed  CAS  Google Scholar 

  • Shah BH, Neithardt A, Chu DB, Shah FB, Catt KJ (2006) Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J Cell Physiol 206:47–57

    Article  PubMed  CAS  Google Scholar 

  • Shea TB, Ortiz D (2003) 17 beta-estradiol alleviates synergistic oxidative stress resulting from folate deprivation and amyloid-beta treatment. J Alzheimers Dis 5:323–327

    PubMed  CAS  Google Scholar 

  • Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Meyer EM, Millard WJ, Simpkins JW (1994) Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Res 644:305–312

    Article  PubMed  CAS  Google Scholar 

  • Speroff L (1982) The formulation of oral contraceptives: does the amount of estrogen make any clinical difference? Johns Hopkins Med J 150:170–176

    PubMed  CAS  Google Scholar 

  • Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B, Andrews H, Mayeux R (1996) Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 348:429–432

    Article  PubMed  CAS  Google Scholar 

  • Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59–68

    Article  PubMed  Google Scholar 

  • Watters JJ, Campbell JS, Cunningham MJ, Krebs EG, Dorsa DM (1997) Rapid membrane effects of steroids in neuroblastoma cells: effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology 138:4030–4033

    Article  PubMed  CAS  Google Scholar 

  • Wen Y, Onyewuchi O, Yang S, Liu R, Simpkins JW (2004) Increased beta-secretase activity and expression in rats following transient cerebral ischemia. Brain Res 1009:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Liu Y, Wise PM (2002) Estradiol enhances Akt activation in cortical explant cultures following neuronal injury. Brain Res Mol Brain Res 102:48–54

    Article  PubMed  CAS  Google Scholar 

  • Woolley CS (1999) Effects of estrogen in the CNS. Curr Opin Neurobiol 9:349–354

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Gouras GK, Greenfield JP, Vincent B, Maslund J, Mazzarelli L, Fried G, Jovanovic JN, Seeger M, Relkin NR, Liao F, Checler F, Buxbaum JD, Chait BT, Thinakaran G, Sisodia SS, Wang R, Greengard P, Gandy S (1998) Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nat Med 4:447–451

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3β and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol (Berl) 92:232–241

    Article  CAS  Google Scholar 

  • Zhang L, Rubinow DR, Xaing G, Li BS, Chang YH, Maric D, Barker JL, Ma W (2001) Estrogen protects against beta-amyloid-induced neurotoxicity in rat hippocampal neurons by activation of Akt. Neuroreport 12:1919–1923

    Article  PubMed  CAS  Google Scholar 

  • Zhu LQ, Wang SH, Liu D, Yin YY, Tian Q, Wang XC, Wang Q, Chen JG, Wang JZ (2007) Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci 27:12211–12220

    Article  PubMed  CAS  Google Scholar 

  • Znamensky V, Akama KT, McEwen BS, Milner TA (2003) Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites. J Neurosci 23:2340–2347

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. JR. Woodgett at University of Toronto for the generous gift of wtGSK-3 plasmid; Dr. K. Marcelo at University of Pennsylvania School of Medicine for HA-pcDNA3.0 plasmid; Dr. K. Walsh at Boston University School of Medicine for dnAkt plasmid; Dr. P. Davies at Albert Einstein College of Medicine for PHF-1 antibody; Dr. H. Xu at Burnham Institute of Neuroscience for N2a cell line; Drs. K. Iqbal, I. Grundke-Iqbal, CX. Gong and F. Liu at NYS Institute for Basic Research for their technical support. This work was supported in part by the National Natural Science Foundation of China (30430270 and 30670738) and the National Science and Technology Committee of China (2006CB500703, 2006AA02Z4A1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Qiang Zhu or Jian-Zhi Wang.

Additional information

Hai-Rong Shi and Ling-Qiang Zhu contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00702-010-0399-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, HR., Zhu, LQ., Wang, SH. et al. 17β-estradiol attenuates glycogen synthase kinase-3β activation and tau hyperphosphorylation in Akt-independent manner. J Neural Transm 115, 879–888 (2008). https://doi.org/10.1007/s00702-008-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0021-z

Keywords

Navigation