Skip to main content

Advertisement

Log in

A New Conditionally Immortalized Human Fetal Brain Pericyte Cell Line: Establishment and Functional Characterization as a Promising Tool for Human Brain Pericyte Studies

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

While pericytes wrap around microvascular endothelial cells throughout the human body, their highest coverage rate is found in the brain. Brain pericytes actively contribute to various brain functions, including the development and stabilization of the blood-brain barrier (BBB), tissue regeneration, and brain inflammation. Accordingly, detailed characterization of the functional nature of brain pericytes is important for understanding the mechanistic basis of brain physiology and pathophysiology. Herein, we report on the development of a new human brain pericyte cell line, hereafter referred to as the human brain pericyte/conditionally immortalized clone 37 (HBPC/ci37). Developed via the cell conditionally immortalization method, these cells exhibited excellent proliferative ability at 33 °C. However, when cultured at 37 °C, HBPC/ci37 cells showed a differentiated phenotype that was marked by morphological alterations and increases in several pericyte-enriched marker mRNA levels, such as platelet-derived growth factor receptor β. It was also found that HBPC/ci37 cells possessed the facilitative ability of in vitro BBB formation and differentiation into a neuronal lineage. Furthermore, HBPC/ci37 cells exhibited the typical “reactive” features of brain pericytes in response to pro-inflammatory cytokines. To summarize, our results clearly demonstrate that HBPC/ci37 cells possess the ability to perform several key brain pericyte functions while also showing the capacity for extensive and continuous proliferation. Based on these findings, it can be expected that, as a unique human brain pericyte model, HBPC/ci37 cells have the potential to contribute to significant advances in the understanding of human brain pericyte physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  PubMed  CAS  Google Scholar 

  2. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericytes? J Cereb Blood Flow Metab 36:451–455

    Article  PubMed  CAS  Google Scholar 

  3. Sá-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45:327–347

    Article  PubMed  CAS  Google Scholar 

  4. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology 7:452–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Frank RN, Dutta S, Mancini MA (1987) Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci 28:1086–1091

    PubMed  CAS  Google Scholar 

  6. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    Article  PubMed  CAS  Google Scholar 

  7. Dore-Duffy P, Katychev A, Wang X, Van Buren E (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 26:613–624

    Article  PubMed  CAS  Google Scholar 

  8. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM et al (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat Neurosci 19:771–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    Article  PubMed  CAS  Google Scholar 

  13. Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ (2011) Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 199:223–229

    Article  PubMed  Google Scholar 

  14. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14:1581–1593

    Article  PubMed  CAS  Google Scholar 

  15. Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan MA et al (2012) Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11:471–476

    Article  PubMed  CAS  Google Scholar 

  16. Paul G, Özen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E, Jansson K, Dannaeus K et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7:e35577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nakagomi T, Kubo S, Nakano-Doi A, Sakuma R, Lu S, Narita A, Kawahara M, Taguchi A et al (2015) Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells 33:1962–1974

    Article  PubMed  CAS  Google Scholar 

  18. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Van de Haar HJ, Jansen JF, van Osch MJ, van Buchem MA, Muller M, Wong SM, Hofman PA, Burgmans S et al (2016) Neurovascular unit impairment in early Alzheimer’s disease measured with magnetic resonance imaging. Neurobiol Aging 45:190–196

    Article  PubMed  Google Scholar 

  20. Dore-Duffy P, Cleary K (2011) Morphology and properties of pericytes. Methods Mol Biol 686:49–68

    Article  PubMed  CAS  Google Scholar 

  21. Kovac A, Erickson MA, Banks WA (2011) Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 8:139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL et al (2014) A role for human brain pericytes in neuroinflammation. J Neuroinflammation 11:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rustenoven J, Jansson D, Smyth LC, Dragunow M (2016) Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci 38:291–304

    Article  CAS  Google Scholar 

  24. Ide T (2006) Mechanism of cell proliferation—cell cycle, oncogenes, and senescence. Yakugaku Zasshi 126:1087–1115

    Article  PubMed  CAS  Google Scholar 

  25. Saleem MA, O’Hare MJ, Reiser J, Coward RJ, Inward CD, Farren T, Xing CY, Ni L et al (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13:630–638

    PubMed  CAS  Google Scholar 

  26. Tabuchi Y, Arai Y, Ohta S, Shioya H, Takahashi R, Ueda M, Takeguchi N, Asano S et al (2002) Development and characterization of conditionally immortalized gastric epithelial cell lines from transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene. Cell Struct Funct 27:71–79

    Article  PubMed  CAS  Google Scholar 

  27. Kamiichi A, Furihata T, Kishida S, Ohta Y, Saito K, Kawamatsu S, Chiba K (2012) Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies. Brain Res 1488:113–122

    Article  PubMed  CAS  Google Scholar 

  28. Kowolik CM, Liang S, Yu Y, Yee JK (2004) Cre-mediated reversible immortalization of human renal proximal tubular epithelial cells. Oncogene 23:5950–5957

    Article  PubMed  CAS  Google Scholar 

  29. O’Hare MJ, Bond J, Clarke C, Takeuchi Y, Atherton AJ, Berry C, Moody J, Silver AR et al (2001) Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci U S A 98:646–651

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S, Gandhi V, Iliakis G, Shay JW et al (2003) hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22:131–146

    Article  PubMed  CAS  Google Scholar 

  31. Furihata T, Ito R, Kamiichi A, Saito K, Chiba K (2016) Establishment and characterization of a new conditionally immortalized human astrocyte cell line. J Neurochem 136:92–105

    Article  PubMed  Google Scholar 

  32. Kohno S, Murata T, Koide N, Hikita K, Kaneda N (2006) Establishment and characterization of a noradrenergic adrenal chromaffin cell line, tsAM5NE, immortalized with the temperature-sensitive SV40 T-antigen. Cell Biol Int 35:325–334

    Article  CAS  Google Scholar 

  33. Hotta Y, Kaneko K, Inuma J, Inami Y, Aruga S, Shimaoka T, Sekiguchi Y, Io H et al (2010) Establishment of a peritoneal mesothelial cell line from a transgenic rat harboring the temperature-sensitive simian virus 40 large T-antigen gene. Nephrol Dial Transplant 25:1825–1832

    Article  PubMed  CAS  Google Scholar 

  34. Sarrab RM, Lennon R, Ni L, Wherlock MD, Welsh GI, Saleem MA (2011) Establishment of conditionally immortalized human glomerular mesangial cells in culture, with unique migratory properties. Am J Physiol Renal Physiol 301:1131–1138

    Article  CAS  Google Scholar 

  35. Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ (2014) Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res 1550:1–8

    Article  PubMed  CAS  Google Scholar 

  36. Fernández-Klett F, Priller J (2015) Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J Cereb Blood Flow Metab 35:883–887

    Article  PubMed  PubMed Central  Google Scholar 

  37. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fernández-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U (2010) Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci U S A 107:22290–22295

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wu T, Huang J, Moore PJ, Little MS, Walton WG, Fellner RC, Alexis NE, Peter Di Y et al (2017) Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nat Commun 8:14118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chen PY, Qin L, Li G, Tellides G, Simons M (2016) Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med 8:712–728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Neuhaus AA, Couch Y, Sutherland BA, Buchan AM (2017) Novel method to study pericyte contractility and responses to ischaemia in vitro using electrical impedance. J Blood Flow Metab 37:2013–2024

    Article  Google Scholar 

  42. Persidsky Y, Hill J, Zhang M, Dykstra H, Winfield M, Reichenbach NL, Potula R, Mukherjee A et al (2016) Dysfunction of brain pericytes in chronic neuroinflammation. J Blood Flow Metab 36:794–807

    Article  CAS  Google Scholar 

  43. Van Dijk CG, Nieuweboer FE, Pei JY, YJ X, Burgisser P, van Mulligen E, el Azzouzi H, Duncker DJ et al (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89

    Article  PubMed  Google Scholar 

  44. Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellström M, Lindahl P, Betsholtz C (2006) Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J 20:1703–1705

    Article  PubMed  CAS  Google Scholar 

  45. Ma SH, Lepak LA, Hussain RJ, Shain W, Shuler ML (2005) An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane. Lab Chip 5:74–85

    Article  PubMed  CAS  Google Scholar 

  46. Ozen I, Boix J, Paul G (2012) Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin Transl Med 1:30

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fernández-Klett F, Potas JR, Hilpert D, Blazej K, Radke J, Huck J, Engel O, Stenzel W et al (2013) Early loss of pericytes and perivascular stromal cell-induced scar formation after stroke. J Cereb Blood Flow Metab 33:428–439

    Article  PubMed  CAS  Google Scholar 

  48. Wang K, Bekar LK, Furber K, Walz W (2004) Vimentin-expressing proximal reactive astrocytes correlate with migration rather than proliferation following focal brain injury. Brain Res 1024:193–202

    Article  PubMed  CAS  Google Scholar 

  49. Gelareh M, Leavitt BR (2015) Indoleamine 2,3 dioxygenase as a potential therapeutic target in Huntington’s disease. J Huntingt Dis 4:109–118

    Article  CAS  Google Scholar 

  50. Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 128:81–93

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mari Hashimoto (Research Center for Molecular Medicine of the Austrian Academy of Sciences) for providing the technical support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomomi Furihata.

Ethics declarations

The Ethics Committee of the Chiba University (Chiba, Japan) approved the use of human cells in this study.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

ESM 2

(PDF 1057 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umehara, K., Sun, Y., Hiura, S. et al. A New Conditionally Immortalized Human Fetal Brain Pericyte Cell Line: Establishment and Functional Characterization as a Promising Tool for Human Brain Pericyte Studies. Mol Neurobiol 55, 5993–6006 (2018). https://doi.org/10.1007/s12035-017-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0815-9

Keywords

Navigation