Skip to main content

Advertisement

Log in

Anesthetic Isoflurane or Desflurane Plus Surgery Differently Affects Cognitive Function in Alzheimer’s Disease Transgenic Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Anesthesia/surgery could be associated with cognitive impairment and Alzheimer’s disease neuropathogenesis. However, whether surgery under different anesthetics has different effects on cognitive function remains largely unknown. We therefore set out to compare effects of anesthetic isoflurane or desflurane plus surgery on cognitive function and hippocampus levels of synaptic marker (postsynaptic density-95 and synaptophysin) and ATP. Five-month-old AD Transgenic (Tg) (FAD5X) and wild-type male mice received isoflurane or desflurane plus abdominal surgery. We assessed cognitive function in Barnes maze and measured hippocampus levels of postsynaptic density-95, synaptophysin, and ATP in the mice. We determined whether vitamin K2 could mitigate these anesthesia/surgery-induced changes. Isoflurane, but not desflurane, plus surgery increased escape latency and escape distance in Barnes maze probe test and reduced postsynaptic density-95, synaptophysin, and ATP levels as compared to control condition in AD Tg mice. Vitamin K2 attenuated the anesthesia/surgery-induced changes in the AD Tg mice. These findings suggest that isoflurane, but not desflurane, plus surgery might induce cognitive impairment via causing brain energy deficits. Pending confirmative studies in both animals and humans suggest desflurane could be a better choice for AD patients when surgery is needed. Moreover, vitamin K2 could treat cognitive deficiency associated with anesthesia and surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, Rabbitt P, Jolles J et al (1998) Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction Lancet 351(9106):857–861

    PubMed  CAS  Google Scholar 

  2. Schenning KJ, Murchison CF, Mattek NC, Silbert LC, Kaye JA, Quinn JF (2016) Surgery is associated with ventricular enlargement as well as cognitive and functional decline. Alzheimer's & dementia : the journal of the Alzheimer's Association 12(5):590–597. https://doi.org/10.1016/j.jalz.2015.10.004

    Article  Google Scholar 

  3. Inouye SK, Marcantonio ER, Kosar CM, Tommet D, Schmitt EM, Travison TG, Saczynski JS, Ngo LH et al (2016) The short-term and long-term relationship between delirium and cognitive trajectory in older surgical patients. Alzheimer's & dementia : the journal of the Alzheimer's Association 12(7):766–775. https://doi.org/10.1016/j.jalz.2016.03.005

    Article  Google Scholar 

  4. Saczynski JS, Marcantonio ER, Quach L, Fong TG, Gross A, Inouye SK, Jones RN (2012) Cognitive trajectories after postoperative delirium. N Engl J Med 367(1):30–39. https://doi.org/10.1056/NEJMoa1112923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG et al (2013) Long-term cognitive impairment after critical illness. N Engl J Med 369(14):1306–1316. https://doi.org/10.1056/NEJMoa1301372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bohnen N, Warner MA, Kokmen E, Kurland LT (1994) Early and midlife exposure to anesthesia and age of onset of Alzheimer's disease. Int J Neurosci 77(3–4):181–185

    Article  PubMed  CAS  Google Scholar 

  7. Chen CW, Lin CC, Chen KB, Kuo YC, Li CY, Chung CJ (2013) Increased risk of dementia in people with previous exposure to general anesthesia: a nationwide population-based case-control study. Alzheimer's & dementia : the journal of the Alzheimer's Association. https://doi.org/10.1016/j.jalz.2013.05.1766

  8. Liu Y, Pan N, Ma Y, Zhang S, Guo W, Li H, Zhou J, Liu G et al (2013) Inhaled sevoflurane may promote progression of amnestic mild cognitive impairment: a prospective, Randomized Parallel-Group Study. Am J Med Sci. https://doi.org/10.1097/MAJ.0b013e31825a674d

  9. Chen PL, Yang CW, Tseng YK, Sun WZ, Wang JL, Wang SJ, Oyang YJ, Fuh JL (2013) Risk of dementia after anaesthesia and surgery. The British journal of psychiatry : the journal of mental science. https://doi.org/10.1192/bjp.bp.112.119610

  10. Bohnen NI, Warner MA, Kokmen E, Beard CM, Kurland LT (1994) Alzheimer's disease and cumulative exposure to anesthesia: a case-control study. J Am Geriatr Soc 42(2):198–201

    Article  PubMed  CAS  Google Scholar 

  11. Knopman DS, Petersen RC, Cha RH, Edland SD, Rocca WA (2005) Coronary artery bypass grafting is not a risk factor for dementia or Alzheimer disease. Neurology 65(7):986–990. https://doi.org/10.1212/01.wnl.0000171954.92119.c7

    Article  PubMed  CAS  Google Scholar 

  12. Avidan MS, Searleman AC, Storandt M, Barnett K, Vannucci A, Saager L, Xiong C, Grant EA et al (2009) Long-term cognitive decline in older subjects was not attributable to noncardiac surgery or major illness. Anesthesiology 111(5):964–970. https://doi.org/10.1097/ALN.0b013e3181bc9719

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sprung J, Jankowski CJ, Roberts RO, Weingarten TN, Aguilar AL, Runkle KJ, Tucker AK, McLaren KC et al (2013) Anesthesia and incident dementia: a population-based, nested, case-control study. Mayo Clin Proc 88(6):552–561. https://doi.org/10.1016/j.mayocp.2013.01.024

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sprung J, Roberts RO, Knopman DS, Olive DM, Gappa JL, Sifuentes VL, Behrend TL, Farmer JD et al (2016) Association of mild cognitive impairment with exposure to general anesthesia for surgical and nonsurgical procedures: a population-based study. Mayo Clin Proc 91(2):208–217. https://doi.org/10.1016/j.mayocp.2015.10.023

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vutskits L, Xie Z (2016) Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat Rev Neurosci 17(11):705–717. https://doi.org/10.1038/nrn.2016.128

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Xu Z, Wang H, Dong Y, Shi HN, Culley DJ, Crosby G, Marcantonio ER et al (2012) Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol 71(5):687–698. https://doi.org/10.1002/ana.23536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp A, Yue Y, Xu T et al (2010) The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem 285(6):4025–4037. https://doi.org/10.1074/jbc.M109.065664

    Article  PubMed  CAS  Google Scholar 

  18. Bianchi SL, Tran T, Liu C, Lin S, Li Y, Keller JM, Eckenhoff RG, Eckenhoff MF (2008) Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging 29(7):1002–1010. https://doi.org/10.1016/j.neurobiolaging.2007.02.009

    Article  PubMed  CAS  Google Scholar 

  19. Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ et al (2010) Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68(3):360–368. https://doi.org/10.1002/ana.22082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M (2010) Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 107(47):20518–20522. https://doi.org/10.1073/pnas.1014557107

    Article  PubMed  PubMed Central  Google Scholar 

  21. Terrando N, Rei Fidalgo A, Vizcaychipi M, Cibelli M, Ma D, Monaco C, Feldmann M, Maze M (2010) The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care 14(3):R88. https://doi.org/10.1186/cc9019

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wan Y, Xu J, Ma D, Zeng Y, Cibelli M, Maze M (2007) Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology 106(3):436–443

    Article  PubMed  Google Scholar 

  23. Wan Y, Xu J, Meng F, Bao Y, Ge Y, Lobo N, Vizcaychipi MP, Zhang D et al (2010) Cognitive decline following major surgery is associated with gliosis, beta-amyloid accumulation, and tau phosphorylation in old mice. Crit Care Med. https://doi.org/10.1097/CCM.0b013e3181f17bcb

  24. Zhang J, Dong Y, Zhou C, Zhang Y, Xie Z (2014) Anesthetic sevoflurane reduces levels of hippocalcin and postsynaptic density protein 95. Mol Neurobiol. https://doi.org/10.1007/s12035-014-8746-1

  25. Zhang J, Jiang W, Zuo Z (2014) Pyrrolidine dithio carbamate attenuates surgery-induced neuroinflammation and cognitive dysfunction possibly via inhibition of nuclear factor kappaB. Neuroscience 261:1–10. https://doi.org/10.1016/j.neuroscience.2013.12.034

    Article  PubMed  CAS  Google Scholar 

  26. Xu Z, Dong Y, Wang H, Culley DJ, Marcantonio ER, Crosby G, Tanzi RE, Zhang Y et al (2014) Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice. Sci Rep 4:3766. https://doi.org/10.1038/srep03766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Xu Z, Dong Y, Wang H, Culley DJ, Marcantonio ER, Crosby G, Tanzi RE, Zhang Y et al (2014) Peripheral surgical wounding and age-dependent neuroinflammation in mice. PLoS One 9(5):e96752. https://doi.org/10.1371/journal.pone.0096752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Peng M, Zhang C, Dong Y, Zhang Y, Nakazawa H, Kaneki M, Zheng H, Shen Y et al (2016) Battery of behavioral tests in mice to study postoperative delirium. Sci Rep 6:29874. https://doi.org/10.1038/srep29874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ren Q, Peng M, Dong Y, Zhang Y, Chen M, Yin N, Marcantonio ER, Xie Z (2015) Surgery plus anesthesia induces loss of attention in mice. Front Cell Neurosci 9:346. https://doi.org/10.3389/fncel.2015.00346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience 16(4):1380–1388

    Article  CAS  Google Scholar 

  31. Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9(5):929–942

    Article  PubMed  CAS  Google Scholar 

  32. Buckley K, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100(4):1284–1294

    Article  PubMed  CAS  Google Scholar 

  33. Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O et al (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336(6086):1306–1310. https://doi.org/10.1126/science.1218632

    Article  PubMed  CAS  Google Scholar 

  34. Li J, Lin JC, Wang H, Peterson JW, Furie BC, Furie B, Booth SL, Volpe JJ et al (2003) Novel role of vitamin k in preventing oxidative injury to developing oligodendrocytes and neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience 23(13):5816–5826

    Article  CAS  Google Scholar 

  35. Onodera K, Shinoda H, Zushida K, Taki K, Kamei J (2000) Antinociceptive effect induced by intraperitoneal administration of vitamin K2 (menatetrenone) in ICR mice. Life Sci 68(1):91–97

    Article  PubMed  CAS  Google Scholar 

  36. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. The Journal of neuroscience : the official journal of the Society for Neuroscience 26(40):10129–10140. https://doi.org/10.1523/JNEUROSCI.1202-06.2006

    Article  CAS  Google Scholar 

  37. Xie Z, Culley DJ, Dong Y, Zhang G, Zhang B, Moir RD, Frosch MP, Crosby G et al (2008) The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo. Ann Neurol 64(6):618–627. https://doi.org/10.1002/ana.21548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93(1):74–104

    Article  PubMed  CAS  Google Scholar 

  39. Nunes MA, Schowe NM, Monteiro-Silva KC, Baraldi-Tornisielo T, Souza SI, Balthazar J, Albuquerque MS, Caetano AL et al (2015) Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer's disease. PLoS One 10(11):e0142267. https://doi.org/10.1371/journal.pone.0142267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lin D, Cao L, Wang Z, Li J, Washington JM, Zuo Z (2012) Lidocaine attenuates cognitive impairment after isoflurane anesthesia in old rats. Behav Brain Res 228(2):319–327. https://doi.org/10.1016/j.bbr.2011.12.010

    Article  PubMed  CAS  Google Scholar 

  41. Zhang J, Tan H, Jiang W, Zuo Z (2014) Amantadine alleviates postoperative cognitive dysfunction possibly by increasing glial cell line-derived neurotrophic factor in rats. Anesthesiology 121(4):773–785. https://doi.org/10.1097/ALN.0000000000000352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yoder RM, Kirby SL (2014) Otoconia-deficient mice show selective spatial deficits. Hippocampus 24(10):1169–1177. https://doi.org/10.1002/hipo.22300

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rosenfeld CS, Ferguson SA (2014) Barnes maze testing strategies with small and large rodent models. J Vis Exp 84:e51194. https://doi.org/10.3791/51194

    Article  Google Scholar 

  44. Li J, Deng J, Sheng W, Zuo Z (2012) Metformin attenuates Alzheimer's disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 101(4):564–574. https://doi.org/10.1016/j.pbb.2012.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Reiserer RS, Harrison FE, Syverud DC, McDonald MP (2007) Impaired spatial learning in the APPSwe + PSEN1DeltaE9 bigenic mouse model of Alzheimer's disease. Genes Brain Behav 6(1):54–65. https://doi.org/10.1111/j.1601-183X.2006.00221.x

    Article  PubMed  CAS  Google Scholar 

  46. Agrawal R, Gomez-Pinilla F (2012) 'Metabolic syndrome' in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. J Physiol 590(10):2485–2499. https://doi.org/10.1113/jphysiol.2012.230078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C (2012) sAPPalpha rescues deficits in amyloid precursor protein knockout mice following focal traumatic brain injury. J Neurochem 122(1):208–220. https://doi.org/10.1111/j.1471-4159.2012.07761.x

    Article  PubMed  CAS  Google Scholar 

  48. Tan H, Cao J, Zhang J, Zuo Z (2014) Critical role of inflammatory cytokines in impairing biochemical processes for learning and memory after surgery in rats. J Neuroinflammation 11:93. https://doi.org/10.1186/1742-2094-11-93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Agrawal R, Noble E, Tyagi E, Zhuang Y, Ying Z, Gomez-Pinilla F (2015) Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta 1852(5):862–872. https://doi.org/10.1016/j.bbadis.2015.01.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. O'Leary TP, Brown RE (2009) Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease. Behav Brain Res 201(1):120–127. https://doi.org/10.1016/j.bbr.2009.01.039

    Article  PubMed  Google Scholar 

  51. Flinn JM, Bozzelli PL, Adlard PA, Railey AM (2014) Spatial memory deficits in a mouse model of late-onset Alzheimer's disease are caused by zinc supplementation and correlate with amyloid-beta levels. Front Aging Neurosci 6:174. https://doi.org/10.3389/fnagi.2014.00174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Tota S, Kamat PK, Shukla R, Nath C (2011) Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behav Brain Res 221(1):207–215. https://doi.org/10.1016/j.bbr.2011.02.041

    Article  PubMed  CAS  Google Scholar 

  53. Berendsen TA, Izamis ML, Xu H, Liu Q, Hertl M, Berthiaume F, Yarmush ML, Uygun K (2011) Hepatocyte viability and adenosine triphosphate content decrease linearly over time during conventional cold storage of rat liver grafts. Transplant Proc 43(5):1484–1488. https://doi.org/10.1016/j.transproceed.2010.12.066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kamat PK, Tota S, Shukla R, Ali S, Najmi AK, Nath C (2011) Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacol Biochem Behav 100(2):311–319. https://doi.org/10.1016/j.pbb.2011.08.019

    Article  PubMed  CAS  Google Scholar 

  55. Zhang C, Zhang Y, Shen Y, Zhao G, Xie Z, Dong Y (2017) Anesthesia/surgery induces cognitive impairment in female Alzheimer's disease transgenic mice. Journal of Alzheimer's disease : JAD 57(2):505–518. https://doi.org/10.3233/JAD-161268

    Article  PubMed  CAS  Google Scholar 

  56. Yang H, Liang G, Hawkins BJ, Madesh M, Pierwola A, Wei H (2008) Inhalational anesthetics induce cell damage by disruption of intracellular calcium homeostasis with different potencies. Anesthesiology 109(2):243–250. https://doi.org/10.1097/ALN.0b013e31817f5c47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Jawhar S, Trawicka A, Jenneckens C, Bayer TA, Wirths O (2012) Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease. Neurobiol Aging 33(1):196 e129-140. https://doi.org/10.1016/j.neurobiolaging.2010.05.027

    Article  CAS  Google Scholar 

  58. Chrzaszcz M, Venkatesan C, Dragisic T, Watterson DM, Wainwright MS (2010) Minozac treatment prevents increased seizure susceptibility in a mouse "two-hit" model of closed skull traumatic brain injury and electroconvulsive shock-induced seizures. J Neurotrauma 27(7):1283–1295. https://doi.org/10.1089/neu.2009.1227

    Article  PubMed  PubMed Central  Google Scholar 

  59. Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM (2011) Depletion of Ly6G/C(+) cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol 232(1–2):94–100. https://doi.org/10.1016/j.jneuroim.2010.10.016

    Article  PubMed  CAS  Google Scholar 

  60. Smithason S, Moore SK, Provencio JJ (2013) Low-dose lipopolysaccharide injection prior to subarachnoid hemorrhage modulates delayed deterioration associated with vasospasm in subarachnoid hemorrhage. Acta Neurochir Suppl 115:253–258. https://doi.org/10.1007/978-3-7091-1192-5_45

    Article  PubMed  PubMed Central  Google Scholar 

  61. Smithason S, Moore SK, Provencio JJ (2012) Systemic administration of LPS worsens delayed deterioration associated with vasospasm after subarachnoid hemorrhage through a myeloid cell-dependent mechanism. Neurocrit Care 16(2):327–334. https://doi.org/10.1007/s12028-011-9651-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Nanou E, Scheuer T, Catterall WA (2016) Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning. Proc Natl Acad Sci U S A 113(46):13209–13214. https://doi.org/10.1073/pnas.1616206113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Raffo E, Coppola A, Ono T, Briggs SW, Galanopoulou AS (2011) A pulse rapamycin therapy for infantile spasms and associated cognitive decline. Neurobiol Dis 43(2):322–329. https://doi.org/10.1016/j.nbd.2011.03.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by R01GM088801, R01AG041274, and R01HD 086977 from the National Institutes of Health, Bethesda, MD (to Z.X.). Dr. Edward Marcantonio was funded by the following grants from the National Institute on Aging: P01 AG031720, R01AG030618, K24AG035075, and R01AG051658. Dr. Greg Crosby was funded by the following grants from the National Institute on Aging: R21AG048637 and RO1AG051812. Dr. Yuan Shen was funded by 81571034 from the National Natural Science Foundation of China. The costs of isoflurane, desflurane, and EMLA cream (2.5% lidocaine and 2.5% prilocaine) were generously provided by the Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital. The studies were performed in the Geriatric Anesthesia Research Unit in the Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital, Boston, MA. These works should be attributed to the Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital and Harvard Medical School.

Author information

Authors and Affiliations

Authors

Contributions

Z.X., H.M., Y.Z., Y.S., G.C., D.J.C., and E.M. conceived and designed the project. H.M., Y.D., Y.Z., and H.Z. performed all the experiments, analyzed the data, and prepared the figures. Z.X. and H.M. wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhongcong Xie.

Ethics declarations

Competing Interests

The authors declare no competing financial interests.

Electronic Supplementary Material

ESM 1

(PDF 4357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, H., Dong, Y., Zhang, Y. et al. Anesthetic Isoflurane or Desflurane Plus Surgery Differently Affects Cognitive Function in Alzheimer’s Disease Transgenic Mice. Mol Neurobiol 55, 5623–5638 (2018). https://doi.org/10.1007/s12035-017-0787-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0787-9

Keywords

Navigation