Skip to main content
Log in

Duloxetine Reduces Oxidative Stress, Apoptosis, and Ca2+ Entry Through Modulation of TRPM2 and TRPV1 Channels in the Hippocampus and Dorsal Root Ganglion of Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Overload of Ca2+ entry and excessive oxidative stress in neurons are the two main causes of depression. Activation of transient receptor potential (TRP) vanilloid type 1 (TRPV1) and TRP melastatin 2 (TRPM2) during oxidative stress has been linked to neuronal survival. Duloxetine (DULOX) in neurons reduced the effects of Ca2+ entry and reactive oxygen species (ROS) through glutamate receptors, and this reduction of effects may also occur through TRPM2 and TRPV1 channels. In order to better characterize the actions of DULOX in peripheral pain and hippocampal oxidative injury through modulation of TRPM2 and TRPV1, we tested the effects of DULOX on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with DULOX. In whole-cell patch-clamp and intracellular-free calcium ([Ca2+]) concentration (Fura-2) experiments, cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons were inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and capsaicin-induced TRPV1 currents were inhibited by capsazepine (CPZ) incubations. TRPM2 and TRPV1 channel current densities, [Ca2+] concentration, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, and intracellular ROS production values in the neurons were lower in the DULOX group than in controls. In addition, the above values were further decreased by DULOX + CPZ and DULOX + ACA treatments. In conclusion, TRPM2 and TRPV1 channels are involved in Ca2+ entry-induced neuronal death and modulation of the activity of these channels by DULOX treatment may account for their neuroprotective activity against apoptosis, excessive ROS production, and Ca2+ entry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

[Ca2+] i :

Intracellular free calcium ion

ACA:

N-(p-amylcinnamoyl) anthranilic acid

ADPR:

ADP-ribose

CAP:

Capsaicin

CHPx:

Cumene hydroperoxide

CPZ:

Capsazepine

DMSO:

Dimethyl sulfoxide

DRG:

Dorsal root ganglion

DULOX:

Duloxetine

EGTA:

Ethylene glycol-bis[2-aminoethyl-ether]-N,N,N,N-tetraacetic acid

FBS:

Fetal bovine serum

HBSS:

Hank’s buffered salt solution

NMDG:

N-methyl-d-aspartate receptors

PEG:

Polyethylene glycol

ROS:

Reactive oxygen species

TRP:

Transient receptor potential

TRPM2:

Transient receptor potential Mu

TRPV1:

Transient receptor potential vanilloid 1

WC:

Whole cell

References

  1. Hayase T (2011) Differential effects of TRPV1 receptor ligands against nicotine-induced depression-like behaviors. BMC Pharmacol 11:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orsolini L, Bellantuono C (2015) Serotonin reuptake inhibitors and breastfeeding: a systematic review. Hum Psychopharmacol 30:4–20

    Article  CAS  PubMed  Google Scholar 

  3. Hsu CC, Chang CW, Peng CH, Liang CS (2014) Rapid management of trigeminal neuralgia and comorbid major depressive disorder with duloxetine. Ann Pharmacother 48:1090–1092

    Article  PubMed  Google Scholar 

  4. Bouhassira D, Wilhelm S, Schacht A, Perrot S, Kosek E, Cruccu G, Freynhagen R, Tesfaye S et al (2014) Neuropathic pain phenotyping as a predictor of treatment response in painful diabetic neuropathy: data from the randomized, double-blind, COMBO-DN study. Pain 155:2171–2179

    Article  PubMed  Google Scholar 

  5. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77

    Article  CAS  PubMed  Google Scholar 

  6. Kordjazy N, Haj-Mirzaian A, Amiri S, Ostadhadi S, Amini-Khoei H, Dehpour AR (2015) Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test. Pharmacol Biochem Behav 141:1–9

    Article  PubMed  Google Scholar 

  7. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36:764–785

    Article  CAS  PubMed  Google Scholar 

  8. Nazıroğlu M, Demirdaş A (2015) Psychiatric disorders and TRP channels: focus on psychotropic drugs. Curr Neuropharmacol 13:248–257

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abbadie C, McManus OB, Sun SY, Bugianesi RM, Dai G, Haedo RJ, Herrington JB, Kaczorowski GJ et al (2010) Analgesic effects of a substituted N-triazole oxindole (TROX-1), a state-dependent, voltage-gated calcium channel 2 blocker. J Pharmacol Exp Ther 334:545–555

    Article  CAS  PubMed  Google Scholar 

  10. Calabrese F, Guidotti G, Molteni R, Racagni G, Mancini M, Riva MA (2012) Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment. PLoS One 7, e37916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zomkowski AD, Engel D, Cunha MP, Gabilan NH, Rodrigues AL (2012) The role of the NMDA receptors and l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of duloxetine in the forced swimming test. Pharmacol Biochem Behav 103:408–417

    Article  CAS  PubMed  Google Scholar 

  12. Engel D, Zomkowski AD, Lieberknecht V, Rodrigues AL, Gabilan NH (2013) Chronic administration of duloxetine and mirtazapine downregulates proapoptotic proteins and upregulates neurotrophin gene expression in the hippocampus and cerebral cortex of mice. J Psychiatr Res 47:802–808

    Article  PubMed  Google Scholar 

  13. Özdemir ÜS, Nazıroğlu M, Şenol N, Ghazizadeh V (2016) Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels. Mol Neurobiol 53(6):3540–3551

  14. Demirdaş A, Nazıroğlu M, Övey IS (2016) Short-term ketamine treatment decreases oxidative stress without influencing TRPM2 and TRPV1 channel gating in the hippocampus and dorsal root ganglion of rats. Cell Mol Neurobiol (in press)

  15. Eren I, Nazıroğlu M, Demirdaş A (2007) Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem Res 32:1188–1195

    Article  CAS  PubMed  Google Scholar 

  16. Eren I, Naziroğlu M, Demirdaş A, Celik O, Uğuz AC, Altunbaşak A, Ozmen I, Uz E (2007) Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 32:497–505

    Article  CAS  PubMed  Google Scholar 

  17. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  18. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  19. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nazıroğlu M, Lückhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-ribose in TRPM2 channels: single channel events. Neurochem Res 33:1256–1262

    Article  PubMed  Google Scholar 

  21. Shimizu S, Takahashi N, Mori Y (2014) TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb Exp Pharmacol 223:767–794

    Article  CAS  PubMed  Google Scholar 

  22. Tóth A, Boczán J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L et al (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168

    Article  PubMed  Google Scholar 

  23. Hong S, Agresta L, Guo C, Wiley JW (2008) The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy. J Neurochem 105:1212–1222

    Article  CAS  PubMed  Google Scholar 

  24. Vandewauw I, Owsianik G, Voets T (2013) Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse. BMC Neurosci 14:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nazıroğlu M, Ciğ B, Ozgül C (2013) Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: role of TRPV1 channels. Neuroscience 242:151–160

    Article  PubMed  Google Scholar 

  26. Nazıroğlu M, Övey İS (2015) Involvement of apoptosis and calcium accumulation through TRPV1 channels in neurobiology of epilepsy. Neuroscience 293:55–66

    Article  PubMed  Google Scholar 

  27. Kasckow JW, Mulchahey JJ, Geracioti TD Jr (2004) Effects of the vanilloid agonist olvanil and antagonist capsazepine on rat behaviors. Prog Neuropsychopharmacol Biol Psychiatry 28:291–295

    Article  CAS  PubMed  Google Scholar 

  28. Akpinar A, Uğuz AC, Nazıroğlu M (2014) Agomelatine and duloxetine synergistically modulates apoptotic pathway by inhibiting oxidative stress triggered intracellular calcium entry in neuronal PC12 cells: role of TRPM2 and voltage-gated calcium channels. J Membr Biol 247:451–459

    Article  CAS  PubMed  Google Scholar 

  29. Sözbir E, Nazıroğlu M (2016) Diabetes enhances oxidative stress-induced TRPM2 channel activity and its control by N-acetylcysteine in rat dorsal root ganglion and brain. Metab Brain Dis 31:385–393

    Article  PubMed  Google Scholar 

  30. Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51:195–206

    Article  CAS  PubMed  Google Scholar 

  31. Espino J, Bejarano I, Redondo PC, Rosado JA, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2010) Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and Bax activation. J Membr Biol 233:105–118

    Article  CAS  PubMed  Google Scholar 

  32. Grynkiewicz C, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  33. Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA et al (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 46:392–400

    Article  CAS  PubMed  Google Scholar 

  34. Uğuz AC, Naziroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232:15–23

    Article  PubMed  Google Scholar 

  35. Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, Russo E, Whalley BJ et al (2014) Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 5:1131–1141

    Article  CAS  PubMed  Google Scholar 

  36. Xia Z, Lundgren B, Bergstrand A, DePierre JW, Nässberger L (1999) Changes in the generation of reactive oxygen species and in mitochondrial membrane potential during apoptosis induced by the antidepressants imipramine, clomipramine, and citalopram and the effects on these changes by Bcl-2 and Bcl-X(L). Biochem Pharmacol 57:1199–1208

    Article  CAS  PubMed  Google Scholar 

  37. Levkovitz Y, Gil-Ad I, Zeldich E, Dayag M, Weizman A (2005) Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J Mol Neurosci 27:29–42

    Article  CAS  PubMed  Google Scholar 

  38. Kumar P, Kalonia H, Kumar A (2010) Nitric oxide mechanism in the protective effect of antidepressants against 3-nitropropionic acid-induced cognitive deficit, glutathione and mitochondrial alterations in animal model of Huntington’s disease. Behav Pharmacol 21:217–230

    Article  CAS  PubMed  Google Scholar 

  39. Singh M, Singh KP, Shukla S, Dikshit M (2015) Assessment of in-utero venlafaxine induced, ROS-mediated, apoptotic neurodegeneration in fetal neocortex and neurobehavioral sequelae in rat offspring. Int J Dev Neurosci 40:60–69

    Article  CAS  PubMed  Google Scholar 

  40. Nazıroğlu M, Özgül C, Çiğ B, Doğan S, Uğuz AC (2011) Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons. J Membr Biol 242:109–118

    Article  PubMed  Google Scholar 

  41. Hajnóczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Roy SS, Yi M (2006) Mitochondrial calcium signaling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40:553–560

    Article  PubMed  PubMed Central  Google Scholar 

  42. González D, Espino J, Bejarano I, López JJ, Rodríguez AB, Pariente JA (2010) Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol Cell Biochem 333:151–157

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The abstract of the study was submitted to the 6th World Congress of Oxidative Stress, Calcium Signaling, and TRP Channels, held 24 and 27 May 2016 in Isparta, Turkey (www.cmos.org.tr).

Authorship Contributions

MN and AD formulated the hypothesis and were responsible for writing the report. İSÖ was responsible for the Ca2+ analyses, animal experiments, and neuronal incubations with DULOX. The authors wish to thank technicians Fatih Şahin and Muhammet Şahin (Neuroscience Research Center, SDU, Isparta, Turkey) for helping with patch-clamp, lipid peroxidation, and antioxidant analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

Financial Disclosure

There is no financial support or disclosure for the current study.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirdaş, A., Nazıroğlu, M. & Övey, İ.S. Duloxetine Reduces Oxidative Stress, Apoptosis, and Ca2+ Entry Through Modulation of TRPM2 and TRPV1 Channels in the Hippocampus and Dorsal Root Ganglion of Rats. Mol Neurobiol 54, 4683–4695 (2017). https://doi.org/10.1007/s12035-016-9992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9992-1

Keywords

Navigation