Skip to main content

TRPs as Chemosensors (ROS, RNS, RCS, Gasotransmitters)

  • Chapter
  • First Online:
Mammalian Transient Receptor Potential (TRP) Cation Channels

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 223))

Abstract

The transient receptor potential (trp) gene superfamily encodes TRP proteins that act as multimodal sensor cation channels for a wide variety of stimuli from outside and inside the cell. Upon chemical or physical stimulation of cells, TRP channels transduce electrical and/or Ca2+ signals via their cation channel activities. These functional features of TRP channels allow the body to react and adapt to different forms of environmental changes. Indeed, members of one class of TRP channels have emerged as sensors of reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive carbonyl species (RCS), and gaseous messenger molecules including molecular oxygen (O2), hydrogen sulfide (H2S), and carbon dioxide (CO2). Hydrogen peroxide (H2O2), an ROS, triggers the production of ADP-ribose, which binds and activates TRPM2. In addition to TRPM2, TRPC5, TRPV1, and TRPA1 are also activated by H2O2 via modification of cysteine (Cys) free sulfhydryl groups. Nitric oxide (NO), a vasoactive gaseous molecule, regulates TRP channels directly via Cys S-nitrosylation or indirectly via cyclic GMP (cGMP)/protein kinase G (PKG)-dependent phosphorylation. Anoxia induced by O2-glucose deprivation and severe hypoxia activates TRPM7 and TRPC6, respectively, whereas TRPA1 serves as a sensor of mild hypoxia and hyperoxia in vagal and sensory neurons. TRPA1 also detects other gaseous molecules, such as hydrogen sulfide (H2S) and carbon dioxide (CO2). In this review, we highlight our current knowledge of TRP channels as chemosensors for ROS, RNS, RCS, and gaseous molecules and discuss their functional impacts on physiological and pathological events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    CAS  PubMed  Google Scholar 

  • Akama KT, Albanese C, Pestell RG, Van Eldik LJ (1998) Amyloid β-peptide stimulates nitric oxide production in astrocytes through an NFκB-dependent mechanism. Proc Natl Acad Sci U S A 95:5795–5800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balzer M, Lintschinger B, Groschner K (1999) Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothelial cells. Cardiovasc Res 42:543–549

    CAS  PubMed  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    CAS  PubMed  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    CAS  PubMed  Google Scholar 

  • Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732

    CAS  PubMed  Google Scholar 

  • Berglin EH, Carlsson J (1985) Potentiation by sulfide of hydrogen peroxide-induced killing of Escherichia coli. Infect Immun 49:538–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bessac BF, Jordt SE (2008) Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology 23:360–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Birmingham K (2002) Future of neuroprotective drugs in doubt. Nat Med 8:5

    CAS  PubMed  Google Scholar 

  • Brukamp K, Jim B, Moeller MJ, Haase VH (2007) Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Am J Physiol Renal Physiol 293:F1397–F1407

    CAS  PubMed  Google Scholar 

  • Buelow B, Song Y, Scharenberg AM (2008) The poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem 283:24571–24583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cain WS, Murphy CL (1980) Interaction between chemoreceptive modalities of odour and irritation. Nature 284:255–257

    CAS  PubMed  Google Scholar 

  • Carrozza JP Jr, Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan JP (1992) Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 71:1334–1340

    CAS  PubMed  Google Scholar 

  • Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 29:323–333

    CAS  PubMed  Google Scholar 

  • Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba NJ, Zuker CS (2009) The taste of carbonation. Science 326:443–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiu J, Dawes IW (2012) Redox control of cell proliferation. Trends Cell Biol 22:592–601

    CAS  PubMed  Google Scholar 

  • Chuang HH, Lin S (2009) Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci U S A 106:20097–20102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clapham DE, Nilius B, Owsianik G (2013) Transient receptor potential channels. Last modified on 27/03/2013. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=78. Accessed on 16 May 2013

  • Cottrell JJ (1988) Altitude exposures during aircraft flight. Flying higher. Chest 93:81–84

    CAS  PubMed  Google Scholar 

  • Cox PJ (1979) Cyclophosphamide cystitis–identification of acrolein as the causative agent. Biochem Pharmacol 28:2045–2049

    CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    CAS  PubMed  Google Scholar 

  • Csete M (2006) Oxygen in the cultivation of stem cells. Ann N Y Acad Sci 1049:1–8

    Google Scholar 

  • de Murcia G, Menissier de Murcia J (1994) Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 19:172–176

    PubMed  Google Scholar 

  • De Sanctis GT, Green FH, Remmers JE (1991) Ventilatory responses to hypoxia and hypercapnia in awake rats pretreated with capsaicin. J Appl Physiol 70:1168–1174

    PubMed  Google Scholar 

  • del Camino D, Yellen G (2001) Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 32:649–656

    PubMed  Google Scholar 

  • Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 132:86–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dietrich A, Kalwa H, Fuchs B, Grimminger F, Weissmann N, Gudermann T (2007) In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium 42:233–244

    CAS  PubMed  Google Scholar 

  • Ding Z, Gomez T, Werkheiser JL, Cowan A, Rawls SM (2008) Icilin induces a hyperthermia in rats that is dependent on nitric oxide production and NMDA receptor activation. Eur J Pharmacol 578:201–208

    CAS  PubMed  Google Scholar 

  • Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (2006) Calcium in cell injury and death. Annu Rev Pathol 1:405–434

    CAS  PubMed  Google Scholar 

  • Dröge W (2000) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Google Scholar 

  • Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K, Ivanovic-Burmazovic I, Nawroth PP, Bierhaus A, Reeh PW, Sauer SK (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287:28291–28306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eggler AL, Liu G, Pezzuto JM, van Breemen RB, Mesecar AD (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc Natl Acad Sci U S A 102:10070–10075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F (2003) Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ Res 93:907–916

    CAS  PubMed  Google Scholar 

  • Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448:1054–1057

    CAS  PubMed  Google Scholar 

  • Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–23

    CAS  PubMed  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    CAS  PubMed  Google Scholar 

  • Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113:14–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol BioSyst 4:372–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giroux C, Scatton B (1996) Ischemic stroke: treatment on the horizon. Eur Neurol 36:61–64

    CAS  PubMed  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898

    CAS  PubMed  Google Scholar 

  • Goodwin JL, Kehrli ME Jr, Uemura E (1997) Integrin Mac-1 and β-amyloid in microglial release of nitric oxide. Brain Res 768:279–286

    CAS  PubMed  Google Scholar 

  • Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361

    CAS  PubMed  Google Scholar 

  • Gruss M, Ettorre G, Stehr AJ, Henrich M, Hempelmann G, Scholz A (2006) Moderate hypoxia influences excitability and blocks dendrotoxin sensitive K+ currents in rat primary sensory neurones. Mol Pain 2:12

    PubMed Central  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  PubMed  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    CAS  PubMed  Google Scholar 

  • Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103:19564–19568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hiroi T, Wajima T, Negoro T, Ishii M, Nakano Y, Kiuchi Y, Mori Y, Shimizu S (2013) Neutrophil TRPM2 channels are implicated in the exacerbation of myocardial ischaemia/reperfusion injury. Cardiovasc Res 97:271–81

    CAS  PubMed  Google Scholar 

  • Howe A, Pack RJ, Wise JC (1981) Arterial chemoreceptor-like activity in the abdominal vagus of the rat. J Physiol 320:309–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386

    CAS  PubMed  Google Scholar 

  • Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131

    CAS  PubMed  Google Scholar 

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    CAS  PubMed  Google Scholar 

  • Jeffery TK, Wanstall JC (2001) Pulmonary vascular remodeling: a target for therapeutic intervention in pulmonary hypertension. Pharmacol Ther 92:1–20

    CAS  PubMed  Google Scholar 

  • Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90

    CAS  PubMed  Google Scholar 

  • Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Höqestätt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427:260–265

    CAS  PubMed  Google Scholar 

  • Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59:1498–1509

    CAS  PubMed  Google Scholar 

  • Kanda S, Harita Y, Shibagaki Y, Sekine T, Igarashi T, Inoue T, Hattori S (2011) Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell 22:1824–1835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101:66–76

    CAS  PubMed  Google Scholar 

  • Karaki H, Ozaki H, Hori M, Mitsui-Saito M, Amano K, Harada K, Miyamoto S, Nakazawa H, Won KJ, Sato K (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 49:157–230

    CAS  PubMed  Google Scholar 

  • Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, Yamamoto S, Miki T, Sawamura S, Suzuki T, Yamakawa K, Mori Y (2012) The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium 51:179–185

    CAS  PubMed  Google Scholar 

  • Kietzmann T, Fandrey J, Acker H (2000) Oxygen radicals as messengers in oxygen-dependent gene expression. New Physiol Sci 15:202–208

    CAS  Google Scholar 

  • Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, Andreasen K, Shapland E, Kucera G, Mogan J, Humann J, Lenz LL, Morrison AD, Perraud AL (2011) Transient receptor potential melastatin 2 (TRPM2) ion channel is required for innate immunity against listeria monocytogenes. Proc Natl Acad Sci U S A 108:11578–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knowles H, Li Y, Perraud AL (2013) The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation. Immunol Res 55:241–248

    CAS  PubMed  Google Scholar 

  • Kolisek M, Beck A, Fleig A, Penner R (2005) Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell 18:61–69

    CAS  PubMed  Google Scholar 

  • Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR (2006) Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 101:618–627

    PubMed  Google Scholar 

  • Kulkarni AC, Kuppusamy P, Parinandi N (2007) Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 9:1717–1730

    CAS  PubMed  Google Scholar 

  • Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci U S A 104:3574–3578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langley B, Ratan RR (2004) Oxidative stress-induced death in the nervous system: cell cycle dependent or independent? J Neurosci Res 77:621–629

    CAS  PubMed  Google Scholar 

  • Lee LY, Milhorn HT Jr (1975) Central ventilatory responses to O2 and CO2 at three levels of carotid chemoreceptor stimulation. Respir Physiol 25:319–333

    CAS  PubMed  Google Scholar 

  • Liao C, Yang H, Zhang R, Sun H, Zhao B, Gao C, Zhu F, Jiao J (2012) The upregulation of TRPC6 contributes to Ca2+ signaling and actin assembly in human mesangial cells after chronic hypoxia. Biochem Biophys Res Commun 421:750–756

    CAS  PubMed  Google Scholar 

  • Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91:1421–1430

    CAS  PubMed  Google Scholar 

  • Longhurst JC, Tjen-A-Looi SC, Fu LW (2001) Cardiac sympathetic afferent activation provoked by myocardial ischemia and reperfusion. Mechanisms and reflexes. Ann N Y Acad Sci 940:74–95

    CAS  PubMed  Google Scholar 

  • López-Barneo J, Pardal R, Ortega-Sáenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Physiol 63:259–287

    PubMed  Google Scholar 

  • Luo M, Sun L, Hu J (2009) Neural detection of gases–carbon dioxide, oxygen–in vertebrates and in vertebrates. Curr Opin Neurobiol 19:354–361

    CAS  PubMed  Google Scholar 

  • Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545

    CAS  PubMed  Google Scholar 

  • Maher M, Ao H, Banke T, Nasser N, Wu NT, Breitenbucher JG, Chaplan SR, Wickenden AD (2008) Activation of TRPA1 by farnesyl thiosalicylic acid. Mol Pharmacol 73:1225–1234

    CAS  PubMed  Google Scholar 

  • Marchesi VT (2011) Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J 25:5–13

    CAS  PubMed  Google Scholar 

  • Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE (1993) β-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer's disease. Trends Neurosci 16:409–414

    CAS  PubMed  Google Scholar 

  • McMahon SB, Abel C (1987) A model for the study of visceral pain states: chronic inflammation of the chronic decerebrate rat urinary bladder by irritant chemicals. Pain 28:109–127

    CAS  PubMed  Google Scholar 

  • Meller ST, Gebhart GF (1992) A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48:501–524

    CAS  PubMed  Google Scholar 

  • Miller BA, Wang J, Hirschler-Laszkiewicz I, Gao E, Song J, Zhang XQ, Koch WJ, Madesh M, Mallilankaraman K, Gu T, Chen SJ, Keefer K, Conrad K, Feldman AM, Cheung JY (2013) The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 304:H1010–H1022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamoto T, Dubin AE, Petrus MJ, Patapoutian A (2009) TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice. PLoS One 4:e7596. doi:10.1371/journal.pone.0007596

    PubMed Central  PubMed  Google Scholar 

  • Miyamoto R, Otsuguro K, Ito S (2011) Time- and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat DRG neurons. Neurosci Lett 499:137–142

    CAS  PubMed  Google Scholar 

  • Morris GF, Bullock R, Marshall SB, Marmarou A, Maas A, Marshall LF (1999) Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel investigators. J Neurosurg 91:737–743

    CAS  PubMed  Google Scholar 

  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg · ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    CAS  PubMed  Google Scholar 

  • Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, Undem BJ (2008) Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 586:1595–1604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neubauer JA, Sunderram J (2004) Oxygen-sensing neurons in the central nervous system. J Appl Physiol 96:367–374

    CAS  PubMed  Google Scholar 

  • Neusser MA, Lindenmeyer MT, Moll AG, Segerer S, Edenhofer I, Sen K, Stiehl DP, Kretzler M, Gröne HJ, Schlöndorff D, Cohen CD (2010) Human nephrosclerosis triggers a hypoxia-related glomerulopathy. Am J Pathol 176:594–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch Eur J Physiol 464:425–458

    CAS  Google Scholar 

  • Numata T, Ogawa N, Takahashi N, Mori Y (2013) TRP channels as sensors of oxygen availability. Pflugers Arch Eur J Physiol 465:1075–85. doi:10.1007/s00424-013-1237-9

    CAS  Google Scholar 

  • Okubo K, Matsumura M, Kawaishi Y, Aoki Y, Matsunami M, Okawa Y, Sekiguchi F, Kawabata A (2012) Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Ca V 3.2 and TRPA1 channels in mice. Br J Pharmacol 166:1738–1743

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliver FJ, Menissier-de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S, de la Rubia G, Stoclet JC, de Murcia G (1999) Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18:4446–4454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    CAS  PubMed  Google Scholar 

  • Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    CAS  PubMed  Google Scholar 

  • Patacchini R, Santicioli P, Giuliani S, Maggi CA (2005) Pharmacological investigation of hydrogen sulfide (H2S) contractile activity in rat detrusor muscle. Eur J Pharmacol 509:171–177

    CAS  PubMed  Google Scholar 

  • Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    CAS  PubMed  Google Scholar 

  • Perraud AL, Schmitz C, Scharenberg AM (2003) TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33:519–531

    CAS  PubMed  Google Scholar 

  • Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148

    CAS  PubMed  Google Scholar 

  • Poburko D, Liao CH, Lemos VS, Lin E, Maruyama Y, Cole WC, van Breemen C (2007) Transient receptor potential channel 6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ Res 101:1030–1038

    CAS  PubMed  Google Scholar 

  • Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiter TA (2006) NO · chemistry: a diversity of targets in the cell. Redox Rep 11:194–206

    CAS  PubMed  Google Scholar 

  • Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67:1016–1023

    CAS  PubMed  Google Scholar 

  • Rossi F, Bianchini E (1996) Synergistic induction of nitric oxide by β-amyloid and cytokines in astrocytes. Biochem Biophys Res Commun 225:474–478

    CAS  PubMed  Google Scholar 

  • Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, Santoro MG (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403:103–108

    CAS  PubMed  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    CAS  PubMed  Google Scholar 

  • Sakuma I, Stuehr DJ, Gross SS, Nathan C, Levi R (1988) Identification of arginine as a precursor of endothelium-derived relaxing factor. Proc Natl Acad Sci U S A 85:8664–8667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salazar H, Llorente I, Jara-Oseguera A, García-Villegas R, Munari M, Gordon SE, Islas LD, Rosenbaum T (2008) A single N-terminal cysteine in TRPV1 determines activation by pungent compounds from onion and garlic. Nat Neurosci 11:255–261

    CAS  PubMed  Google Scholar 

  • Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U (1999) Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet 353:2205–2207

    CAS  PubMed  Google Scholar 

  • Satoh T, Lipton SA (2007) Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci 30:37–45

    CAS  PubMed  Google Scholar 

  • Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142

    PubMed  Google Scholar 

  • Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    CAS  PubMed  Google Scholar 

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shibata T, Yamada T, Ishii T, Kumazawa S, Nakamura H, Masutani H, Yodoi J, Uchida K (2003) Thioredoxin as a molecular target of cyclopentenone prostaglandins. J Biol Chem 278:26046–26054

    CAS  PubMed  Google Scholar 

  • Shiraki T, Kamiya N, Shiki S, Kodama TS, Kakizuka A, Jingami H (2005) Alpha, beta-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor gamma. J Biol Chem 280:14145–14153

    CAS  PubMed  Google Scholar 

  • Silver WL, Moulton DG (1982) Chemosensitivity of rat nasal trigeminal receptors. Physiol Behav 28:927–931

    CAS  PubMed  Google Scholar 

  • Steen KH, Reeh PW, Anton F, Handwerker HO (1992) Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J Neurosci 12:86–95

    CAS  PubMed  Google Scholar 

  • Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829

    CAS  PubMed  Google Scholar 

  • Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, Sengchanthalangsy LL, Ghosh G, Glass CK (2000) 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc Natl Acad Sci U S A 97:4844–4849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Högestätt ED, Zygmunt PM (2008) Distribution and function of the hydrogen sulfide-sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53:391–400

    CAS  PubMed  Google Scholar 

  • Suematsu M, Suganuma K, Kashiwagi S (2003) Mechanistic probing of gaseous signal transduction in microcirculation. Antioxid Redox Signal 5:485–492

    CAS  PubMed  Google Scholar 

  • Suh GS, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859

    CAS  PubMed  Google Scholar 

  • Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, Golde TE, Orser BA, Macdonald JF, Tymianski M (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    CAS  PubMed  Google Scholar 

  • Swartz HM, Khan N, Khramtsov VV (2007) Use of electron paramagnetic resonance spectroscopy to evaluate the redox state in vivo. Antioxid Redox Signal 9:1757–1771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    PubMed  Google Scholar 

  • Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, Uchida K, Mori Y (2008a) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels (Austin) 2:287–298

    Google Scholar 

  • Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008b) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586:4209–4223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S, Knevels E, Carmeliet P, Oga T, Kaneko S, Suga S, Nokami T, Yoshida J, Mori Y (2011) TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7:701–711

    CAS  PubMed  Google Scholar 

  • Tanuma S, Yagi T, Johnson GS (1985) Endogenous ADP ribosylation of high mobility group proteins 1 and 2 and histone H1 following DNA damage in intact cells. Arch Biochem Biophys 237:38–42

    CAS  PubMed  Google Scholar 

  • Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, Carr MJ, Undem BJ (2008a) Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol 586:3447–3459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor-Clark TE, Undem BJ, Macglashan DW Jr, Ghatta S, Carr MJ, McAlexander MA (2008b) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73:274–281

    CAS  PubMed  Google Scholar 

  • Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75:820–829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trapp S, Aller MI, Wisden W, Gourine AV (2008) A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 28:8844–8850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497

    CAS  PubMed  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    CAS  PubMed  Google Scholar 

  • Walker DG, Kim SU, McGeer PL (1995) Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J Neurosci Res 40:478–493

    CAS  PubMed  Google Scholar 

  • Wallace MN, Geddes JG, Farquhar DA, Masson MR (1997) Nitric oxide synthase in reactive astrocytes adjacent to β-amyloid plaques. Exp Neurol 144:266–272

    CAS  PubMed  Google Scholar 

  • Wang YY, Chang RB, Liman ER (2010) TRPA1 is a component of the nociceptive response to CO2. J Neurosci 30:12958–12963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waypa GB, Schumacker PT (2010) Hypoxia-induced changes in pulmonary and systemic vascular resistance: where is the O2 sensor? Respir Physiol Neurobiol 174:201–211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webb JD, Coleman ML, Pugh CW (2009) Hypoxia, hypoxia-inducible factors (HIF). HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 66:3539–3554

    CAS  PubMed  Google Scholar 

  • Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156

    CAS  PubMed  Google Scholar 

  • Wehrhahn J, Kraft R, Harteneck C, Hauschildt S (2010) Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol 184:2386–93

    CAS  PubMed  Google Scholar 

  • Weir EK, López-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weissmann N, Winterhalder S, Nollen M, Voswinckel R, Quanz K, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F (2001) NO and reactive oxygen species are involved in biphasic hypoxic vasoconstriction of isolated rabbit lungs. Am J Physiol Lung Cell 280:L638–L645

    CAS  Google Scholar 

  • Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederosy Schnitzler M, Ghofrani HA, Schermuly RT, Pinkenburg O, Seeger W, Grimminger F, Gudermann T (2006) Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A 103:19093–19098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werkheiser J, Cowan A, Gomez T, Henry C, Parekh S, Chau S, Baron DA, Rawls SM (2009) Icilin-induced wet-dog shakes in rats are dependent on NMDA receptor activation and nitric oxide production. Pharmacol Biochem Behav 92:543–548

    CAS  PubMed  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    CAS  PubMed  Google Scholar 

  • Wong CO, Sukumar P, Beech DJ, Yao X (2010) Nitric oxide lacks direct effect on TRPC5 channels but suppresses endogenous TRPC5-containing channels in endothelial cells. Pflugers Arch 460:121–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu SZ, Sukumar P, Zeng F, Li J, Jairaman A, English A, Naylor J, Ciurtin C, Majeed Y, Milligan CJ, Bahnasi YM, Al-Shawaf E, Porter KE, Jiang LH, Emery P, Sivaprasadarao A, Beech DJ (2008) TRPC channel activation by extracellular thioredoxin. Nature 451:69–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamabe T, Dhir G, Cowan EP, Wolf AL, Bergey GK, Krumholz A, Barry E, Hoffman PM, Dhib-Jalbut S (1994) Cytokine-gene expression in measles-infected adult human glial cells. J Neuroimmunol 49:171–179

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, Su MJ, Wu ML (2006) Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ 13:1815–1826

    CAS  PubMed  Google Scholar 

  • Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y (2006) Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol 2:596–607

    CAS  PubMed  Google Scholar 

  • Young JM, Waters H, Dong C, Fülle HJ, Liman ER (2007) Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One 2:e884

    PubMed Central  PubMed  Google Scholar 

  • Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 278:16222–16229

    CAS  PubMed  Google Scholar 

  • Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, Penn L, Barber DL, Stahl R, Carey DJ, Cheung JY, Miller BA (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:C1146–C1159

    CAS  PubMed  Google Scholar 

  • Ziemann AE, Allen JE, Dahdaleh NS, Drebot II, Coryell MW, Wunsch AM, Lynch CM, Faraci FM, Howard MA 3rd, Welsh MJ, Wemmie JA (2009) The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 139:1012–1021

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shimizu, S., Takahashi, N., Mori, Y. (2014). TRPs as Chemosensors (ROS, RNS, RCS, Gasotransmitters). In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-05161-1_3

Download citation

Publish with us

Policies and ethics