Skip to main content

Advertisement

Log in

Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Blood-brain barrier (BBB) breakdown to plasma proteins leads to vasogenic edema which when diffuse is a life threatening complication in many types of acute brain injury. In our previous studies, early BBB breakdown was associated with increased expression of endothelial caveolin-1α (Cav-1) protein and decreased expression of occludin. In order to attenuate these changes, the effects of intra-cortical angiopoietin-1 (Ang1), a potent anti-permeability factor, on BBB breakdown was assessed in the cold injury model at day 1 post-injury. Overall vascular permeability at the lesion site was assessed in Ang1 non-treated and treated cold-injured rats, using horseradish peroxidase (HRP) as a tracer and in individual vessels by dual labeling immunofluorescence for Cav-1 or occludin and fibronectin, a marker of BBB breakdown. In addition, Cav-1, occludin, Akt, and ERK1/2 expression at the lesion site was detected by immunoblotting. Non-treated cold-injured rats showed focal HRP leakage at the lesion site which was significantly decreased (P < 0.001) in the Ang1-treated group. Increased endothelial Cav-1 and decreased occludin immunoreactivity was observed in arterioles and corresponding-sized venules with BBB breakdown in the non-treated cold-injured rats, and similar expression of these proteins was detected at the lesion site by immunoblotting associated with increased expression of Akt and ERK2 proteins. These alterations were attenuated by Ang1 treatment which resulted in Cav-1, occludin, Akt, and ERK1/2 protein expression that was similar to that of the control groups as was the endothelial Cav-1 and occludin immunoreactivity in leaky vessels. These data suggest that Ang1 administered early post-injury has potential in attenuating the degree of vascular alterations and subsequent vasogenic edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nag S, Manias JL, Stewart DJ (2009) Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 118:197–217

    Article  PubMed  Google Scholar 

  2. Nag S, Kapadia A, Stewart DJ (2011) Review: molecular pathogenesis of blood-brain barrier breakdown in acute brain injury. Neuropathol Appl Neurobiol 37:3–23

    Article  CAS  PubMed  Google Scholar 

  3. Nag S (2003) Pathophysiology of blood-brain barrier breakdown. Methods Mol Med 89:97–119

    CAS  PubMed  Google Scholar 

  4. Nag S (2002) The blood-brain barrier and cerebral angiogenesis: lessons from the cold-injury model. Trends Mol Med 8:38–44

    Article  CAS  PubMed  Google Scholar 

  5. Nag S, Robertson DM, Dinsdale HB (1979) Quantitative estimate of pinocytosis in experimental acute hypertension. Acta Neuropathol (Berl) 46:107–116

    Article  CAS  Google Scholar 

  6. Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol (Berl) 114:459–469

    Article  CAS  Google Scholar 

  7. Nag S, Papneja T, Venugopalan R, Stewart DJ (2005) Increased angiopoietin2 expression is associated with endothelial apoptosis and blood-brain barrier breakdown. Lab Invest 85:1189–1198

    Article  CAS  PubMed  Google Scholar 

  8. Nourhaghighi N, Teichert-Kuliszewska K, Davis J, Stewart DJ, Nag S (2003) Altered expression of angiopoietins during blood-brain barrier breakdown and angiogenesis. Lab Invest 83:1211–1222

    Article  CAS  PubMed  Google Scholar 

  9. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. Febs Lett 448:249–253

    Article  CAS  PubMed  Google Scholar 

  10. Fujikawa K, Scherpenseel ID, Jain SK, Presman E, Varticovski L (1999) Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253(2):663–672

    Article  CAS  PubMed  Google Scholar 

  11. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, OConnor DS, Li FZ, Altieri DC, Sessa WC (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/ survivin pathway. J Biol Chem 275(13):9102–9105

    Article  CAS  PubMed  Google Scholar 

  12. Harfouche R, Hassessian HM, Guo Y, Faivre V, Srikant CB, Yancopoulos GD, Hussain SN (2002) Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 64:135–147

    Article  CAS  PubMed  Google Scholar 

  13. Cohen B, Barkan D, Levy Y, Goldberg I, Fridman E, Kopolovic J, Rubinstein M (2001) Leptin induces angiopoietin-2 expression in adipose tissues. J Biol Chem 276:7697–7700

    Article  CAS  PubMed  Google Scholar 

  14. Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, Zabski S, Yancopoulos GD, Grumet M (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80(6):837–849

    Article  CAS  PubMed  Google Scholar 

  15. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286(5449):2511–2514

    Article  CAS  PubMed  Google Scholar 

  16. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA (2000) Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87:603–607

    Article  CAS  PubMed  Google Scholar 

  17. Jho D, Mehta D, Ahmmed G, Gao XP, Tiruppathi C, Broman M, Malik AB (2005) Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2 influx. Circ Res 96:1282–1290

    Article  CAS  PubMed  Google Scholar 

  18. Pizurki L, Zhou Z, Glynos K, Roussos C, Papapetropoulos A (2003) Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Br J Pharmacol 139:329–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G, Papapetropoulos A (2005) Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 314:738–744

    Article  CAS  PubMed  Google Scholar 

  20. Nag S (1996) Cold-injury of the cerebral cortex: immunolocalization of cellular proteins and blood-brain barrier permeability studies. J Neuropathol Exp Neurol 55:880–888

    Article  CAS  PubMed  Google Scholar 

  21. Nag S, Picard P, Stewart DJ (2001) Expression of nitric oxide synthases and nitrotyrosine during blood-brain barrier breakdown and repair after cold injury. Lab Invest 81:41–49

    Article  CAS  PubMed  Google Scholar 

  22. Boyd NL, Park H, Yi H, Boo YC, Sorescu GP, Sykes M, Jo H (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285:H1113–H1122

    Article  CAS  PubMed  Google Scholar 

  23. Park H, Go YM, Darji R, Choi JW, Lisanti MP, Maland MC, Jo H (2000) Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol 278:H1285–H1293

    CAS  PubMed  Google Scholar 

  24. Nag S, Manias JL, Stewart DJ (2009) Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol Appl Neurobiol 35:417–426

    Article  CAS  PubMed  Google Scholar 

  25. Cotran RS, Karnovsky MJ, Goth A (1968) Resistance of Wistar-Furth rats to the mast cell-damaging effect of horseradish peroxidase. J Histochem Cytochem 16:382–383

    Article  CAS  PubMed  Google Scholar 

  26. Nag S (2003) Blood-brain barrier permeability using tracers and immunohistochemistry. Methods Mol Med 89:133–144

    CAS  PubMed  Google Scholar 

  27. Manias JL, Kapadia A, Nag S (2011) Detection of multiple proteins in intracerebral vessels by confocal microscopy. Methods Mol Biol 686:177–192

    Article  CAS  PubMed  Google Scholar 

  28. DeBusk LM, Hallahan DE, Lin PC (2004) Akt is a major angiogenic mediator downstream of the Ang1/Tie2 signaling pathway. Exp Cell Res 298:167–177

    Article  CAS  PubMed  Google Scholar 

  29. Nag S, Eskandarian MR, Davis J, Eubanks JH (2002) Differential expression of vascular endothelial growth factor-A (VEGF-A) and VEGF-B after brain injury. J Neuropathol Exp Neurol 61:778–788

    Article  CAS  PubMed  Google Scholar 

  30. Xuan G, Li H, Li Y, Lu L, Zhao M (2015) Protective effect of angiopoietin-1 on the blood-brain barrier after focal cerebral ischemia-reperfusion injury in rats. J Int Transl Med 3(1):503–507

    Google Scholar 

  31. Zhang ZG, Zhang L, Croll SD, Chopp M (2002) Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113:683–687

    Article  CAS  PubMed  Google Scholar 

  32. Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133

    Article  CAS  PubMed  Google Scholar 

  33. Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285:H1720–H1729

    Article  CAS  PubMed  Google Scholar 

  34. Hailstones D, Sleer LS, Parton RG, Stanley KK (1998) Regulation of caveolin and caveolae by cholesterol in MDCK cells. J Lipid Res 39:369–379

    CAS  PubMed  Google Scholar 

  35. Lossinsky AS, Shivers RR (2004) Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review Histol Histopathol 19:535–564

    CAS  PubMed  Google Scholar 

  36. Mayhan WG (2000) Nitric oxide donor-induced increase in permeability of the blood- brain barrier. Brain Res 866(1-2):101–108

    Article  CAS  PubMed  Google Scholar 

  37. Unterberg A, Wahl M, Baethmann A (1984) Effects of bradykinin on permeability and diameter of pial vessels in vivo. J Cereb Blood Flow Metab 4:574–585

    Article  CAS  PubMed  Google Scholar 

  38. Shin T, Kim H, Jin JK, Moon C, Ahn M, Tanuma N, Matsumoto Y (2005) Expression of caveolin-1, -2, and -3 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. J Neuroimmunol 165:11–20

    Article  CAS  PubMed  Google Scholar 

  39. Badaut J, Ajao DO, Sorensen DW, Fukuda AM, Pellerin L (2015) Caveolin expression changes in the neurovascular unit after juvenile traumatic brain injury: signs of blood-brain barrier healing? Neuroscience 285:215–226

    Article  CAS  PubMed  Google Scholar 

  40. Jasmin JF, Malhotra S, Singh DM, Mercier I, Rosenbaum DM, Lisanti MP (2007) Caveolin-1 deficiency increases cerebral ischemic injury. Circ Res 100:721–729

    Article  CAS  PubMed  Google Scholar 

  41. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110(Pt 14):1603–1613

    CAS  PubMed  Google Scholar 

  42. Dallasta LM, Pisarov LA, Esplen JE, Werley JV, Moses AV, Nelson JA, Achim CL (1999) Blood-brain barrier tight junction disruption in human immunodeficiency virus-1 encephalitis. Am J Pathol 155(6):1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Plumb J, McQuaid S, Mirakhur M, Kirk J (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12:154–169

    Article  PubMed  Google Scholar 

  44. Lee SW, Kim WJ, Jun HO, Choi YK, Kim KW (2009) Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int J Mol Med 23:279–284

    CAS  PubMed  Google Scholar 

  45. Baffert F, Le T, Thurston G, McDonald DM (2006) Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am J Physiol Heart Circ Physiol 290:H107–H118

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, G alpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  CAS  PubMed  Google Scholar 

  47. Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 23:1161–1168

    Article  CAS  PubMed  Google Scholar 

  48. Head BP, Patel HH, Insel PA (2014) Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochim Biophys Acta 1838:532–545

    Article  CAS  PubMed  Google Scholar 

  49. Parton RG, del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14:98–112

    Article  CAS  PubMed  Google Scholar 

  50. Thomas CM, Smart EJ (2008) Caveolae structure and function. J Cell Mol Med 12:796–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harfouche R, Hussain SN (2006) Signaling and regulation of endothelial cell survival by angiopoietin-2. Am J Physiol Heart Circ Physiol 291:H1635–H1645

    Article  CAS  PubMed  Google Scholar 

  52. Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–1250

    Article  CAS  PubMed  Google Scholar 

  53. Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270:14843–14846

    Article  CAS  PubMed  Google Scholar 

  54. Karin M (1994) Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Opin Cell Biol 6:415–424

    Article  CAS  PubMed  Google Scholar 

  55. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC (2005) Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96:635–642

    Article  CAS  PubMed  Google Scholar 

  56. Kaya D, Gursoy-Ozdemir Y, Yemisci M, Tuncer N, Aktan S, Dalkara T (2005) VEGF protects brain against focal ischemia without increasing blood-brain permeability when administered intracerebroventricularly. J Cereb Blood Flow Metab 25:1111–1118

    Article  CAS  PubMed  Google Scholar 

  57. Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM (2006) The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J 20:1185–1187

    Article  CAS  PubMed  Google Scholar 

  58. Mori T, Wang X, Jung JC, Sumii T, Singhal AB, Fini ME, Dixon CE, Alessandrini A, Lo EH (2002) Mitogen-activated protein kinase inhibition in traumatic brain injury: in vitro and in vivo effects. J Cereb Blood Flow Metab 22:444–452

    Article  CAS  PubMed  Google Scholar 

  59. Yoon MJ, Cho CH, Lee CS, Jang IH, Ryu SH, Koh GY (2003) Localization of Tie2 and phospholipase D in endothelial caveolae is involved in angiopoietin-1-induced MEK/ERK phosphorylation and migration in endothelial cells. Biochem Biophys Res Commun 308:101–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Heart and Stroke Foundation of Canada (Grant No. T6003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukriti Nag.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, S., Manias, J.L., Kapadia, A. et al. Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Mol Neurobiol 54, 4232–4242 (2017). https://doi.org/10.1007/s12035-016-9973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9973-4

Keywords

Navigation