Skip to main content

Detection of Multiple Proteins in Intracerebral Vessels by Confocal Microscopy

  • Protocol
  • First Online:
The Blood-Brain and Other Neural Barriers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 686))

Abstract

Assessment of the blood-brain barrier (BBB) may involve the localization of endothelial proteins within the context of endothelial permeability to plasma proteins. The use of antibodies conjugated to fluorescent dyes, coupled with analysis by confocal microscopy, allows for the detection of multiple proteins in components of the neurovascular unit including endothelium and astrocytes. This chapter provides a detailed protocol for detection of three proteins in fixed or frozen sections of rat brain using three fluorophores with unique excitation/emission spectra. Also included is a protocol for tyramide signal amplification, which is useful for detecting proteins of low abundance, and methods for quantitation of intracerebral vessels expressing a particular protein of interest with and without BBB breakdown to plasma proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nag S (1984) Cerebral changes in chronic hypertension: combined permeability and immunohistochemical studies. Acta Neuropathol (Berl) 62:178–184

    Article  CAS  Google Scholar 

  2. Nag S, Manias JL, Stewart DJ (2009) Expression of endothelial phosphorylated caveolin-1 is increased in brain injury. Neuropathol Appl Neurobiol 35:417–426

    Article  CAS  PubMed  Google Scholar 

  3. Yeung D, Manias JL, Stewart DJ, Nag S (2008) Decreased junctional adhesion molecule-A expression during blood-brain barrier breakdown. Acta Neuropathol 115:635–642

    Article  CAS  PubMed  Google Scholar 

  4. Nag S, Takahashi JL, Kilty DW (1997) Role of vascular endothelial growth factor in blood-brain barrier breakdown and angiogenesis in brain trauma. J Neuropathol Exp Neurol 56:912–921

    Article  CAS  PubMed  Google Scholar 

  5. Cornford EM, Hyman S, Cornford ME (2003) Immunogold detection of microvascular proteins in the compromised blood-brain barrier. Methods Mol Med 89:161–175

    CAS  PubMed  Google Scholar 

  6. Mullins JM (1994) Overview of fluorophores. Methods Mol Biol 34:107–116

    CAS  PubMed  Google Scholar 

  7. Adamec E, Yang F, Cole GM, Nixon RA (2001) Multiple-label immunocytochemistry for the evaluation of nature of cell death in experimental models of neurodegeneration. Brain Res Brain Res Protoc 7:193–202

    Article  CAS  PubMed  Google Scholar 

  8. Bausch SB (1998) A method for triple fluorescence labeling with Vicia villosa agglutinin, an anti-parvalbumin antibody and an anti-G-protein-coupled receptor antibody. Brain Res Brain Res Protoc 2:286–298

    Article  CAS  PubMed  Google Scholar 

  9. Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol (Berl) 114:459–469

    Article  CAS  Google Scholar 

  10. Miyashita T (2004) Confocal microscopy for intracellular co-localization of proteins. Methods Mol Biol 261:399–410

    CAS  PubMed  Google Scholar 

  11. Wouterlood FG, Vinkenoog M, van den OM (2002) Tracing tools to resolve neural circuits. Network 13:327–342

    Google Scholar 

  12. Stelzer EH, Wacker I, De M, Jr. (1991) Confocal fluorescence microscopy in modern cell biology. Semin Cell Biol 2:145–152

    CAS  PubMed  Google Scholar 

  13. Harvath L (1994) Overview of fluorescence analysis with the confocal microscope. Methods Mol Biol 34:337–347

    CAS  PubMed  Google Scholar 

  14. Harlow E, Lane D (1998) Using antibodies. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  15. Simmons DM, Arriza JL, Swanson LW (1989) A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radiolaveled single-stranded RNA probes. J Histotechnol 12:169–180

    CAS  Google Scholar 

  16. Werner M, von WR, Komminoth P (1996) Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochem Cell Biol 105:253–260

    Google Scholar 

  17. Yamashita S (2007) Heat-induced antigen retrieval: mechanisms and application to histochemistry. Prog Histochem Cytochem 41:141–200

    Article  CAS  PubMed  Google Scholar 

  18. Morgan JM, Navabi H, Schmid KW, Jasani B (1994) Possible role of tissue-bound calcium ions in citrate-mediated high-temperature antigen retrieval. J Pathol 174:301–307

    Article  CAS  PubMed  Google Scholar 

  19. Paddock SW (2000) Principles and practices of laser scanning confocal microscopy. Mol Biotechnol 16:127–149

    Article  CAS  PubMed  Google Scholar 

  20. Brelje TC, Wessendorf MW, Sorenson RL (1993) Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. Methods Cell Biol 38:97–181

    Article  CAS  PubMed  Google Scholar 

  21. Wessel GM, McClay DR (1986) Two embryonic, tissue-specific molecules identified by a double-label immunofluorescence technique for monoclonal antibodies. J Histochem Cytochem 34:703–706

    CAS  PubMed  Google Scholar 

  22. Wang G, Achim CL, Hamilton RL, Wiley CA, Soontornniyomkij V (1999) Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy. Methods 18:459–464

    Article  CAS  PubMed  Google Scholar 

  23. Cattoretti G, Pileri S, Parravicini C, Becker MH, Poggi S, Bifulco C, Key G, D’Amato L, Sabattini E, Feudale E (1993) Antigen unmasking on formalin-fixed, paraffin-embedded tissue sections. J Pathol 171:83–98

    Article  CAS  PubMed  Google Scholar 

  24. Pileri SA, Roncador G, Ceccarelli C, Piccioli M, Briskomatis A, Sabattini E, Ascani S, Santini D, Piccaluga PP, Leone O, Damiani S, Ercolessi C, Sandri F, Pieri F, Leoncini L, Falini B (1997) Antigen retrieval techniques in immunohistochemistry: comparison of different methods. J Pathol 183:116–123

    Article  CAS  PubMed  Google Scholar 

  25. Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR (1993) Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J Histochem Cytochem 41:1599–1604

    CAS  PubMed  Google Scholar 

  26. Norton AJ, Jordan S, Yeomans P (1994) Brief, high-temperature heat denaturation (pressure cooking): a simple and effective method of antigen retrieval for routinely processed tissues. J Pathol 173:371–379

    Article  CAS  PubMed  Google Scholar 

  27. Miller RTEstran C (1995) Heat-induced epitope retrieval with a pressure cooker. Suggestions for optimal use. Appl Immunohistochem 3:190–193

    Google Scholar 

  28. Bankfalvi A, Navabi H, Bier B, Bocker W, Jasani B, Schmid KW (1994) Wet autoclave pretreatment for antigen retrieval in diagnostic immunohistochemistry. J Pathol 174:223–228

    Article  CAS  PubMed  Google Scholar 

  29. Shin RW, Iwaki T, Kitamoto T, Tateishi J (1991) Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer’s disease brain tissues. Lab Invest 64:693–702

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the Heart & Stroke Foundation of Ontario #5347, #6003.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Manias, J.L., Kapadia, A., Nag, S. (2011). Detection of Multiple Proteins in Intracerebral Vessels by Confocal Microscopy. In: Nag, S. (eds) The Blood-Brain and Other Neural Barriers. Methods in Molecular Biology, vol 686. Humana Press. https://doi.org/10.1007/978-1-60761-938-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-938-3_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-937-6

  • Online ISBN: 978-1-60761-938-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics