Skip to main content

Advertisement

Log in

Mitochondrial Metabolism Power SIRT2-Dependent Deficient Traffic Causing Alzheimer’s-Disease Related Pathology

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Multiple lines of evidence state a major role for mitochondrial dysfunction in sporadic Alzheimer’s disease (AD) etiopathogenesis. However, the molecular mechanism(s) triggered by mitochondrial deficits that lead to neurodegeneration remain elusive. Herein, we propose a new mechanism by which mitochondrial loss of potential leads to a dysfunction in autophagy/mitophagy due to the overactivation of SIRT2, a tubulin deacetylase that regulates microtubule network acetylation, and provide insights into the association between metabolism, phosphorylation, and Aβ aggregation. We observed an increase in SIRT2 levels and a decrease in the acetylation of lys40 of tubulin in AD cells containing patient mtDNA as well as in AD brains. SIRT2 loss of function either with AK1 (a specific SIRT2 inhibitor) or by SIRT2 knockout recovers microtubule stabilization and improves autophagy, favoring cell survival through the elimination of toxic Aβ oligomers. Our data provide strong evidence for a functional role of tubulin acetylation on autophagic vesicle traffic and mitochondria degradation. We propose that SIRT2 inhibition may improve microtubule assembly thus representing a valid approach as disease-modifying therapy for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231. doi:10.1016/j.bbadis.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  2. Parker WD Jr, Filley CM, Parks JK (1990) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40(8):1302–1303

    Article  PubMed  Google Scholar 

  3. Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63(1):8–20. doi:10.1016/j.mehy.2003.12.045

    Article  CAS  PubMed  Google Scholar 

  4. Silva DF, Selfridge JE, Lu J, Roy ELN, Hutfles L, Burns JM, Michaelis EK, Yan S et al (2013) Bioenergetic flux, mitochondrial mass and mitochondrial morphology dynamics in AD and MCI cybrid cell lines. Hum Mol Genet 22(19):3931–3946. doi:10.1093/hmg/ddt247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silva DF, Santana I, Esteves AR, Baldeiras I, Arduino DM, Oliveira CR, Cardoso SM (2013) Prodromal metabolic phenotype in MCI cybrids: implications for Alzheimer’s disease. Curr Alzheimer Res 10(2):180–190

    Article  CAS  PubMed  Google Scholar 

  6. Valla J, Schneider L, Niedzielko T, Coon KD, Caselli R, Sabbagh MN, Ahern GL, Baxter L et al (2006) Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 6(6):323–330. doi:10.1016/j.mito.2006.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Satoh A, Imai S (2014) Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat Commun 5:4211. doi:10.1038/ncomms5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harting K, Knoll B (2010) SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology. Eur J Cell Biol 89(2–3):262–269. doi:10.1016/j.ejcb.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  9. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD + −dependent tubulin deacetylase. Mol Cell 11(2):437–444

    Article  CAS  PubMed  Google Scholar 

  10. Stokin GB, Goldstein LS (2006) Axonal transport and Alzheimer’s disease. Annu Rev Biochem 75:607–627. doi:10.1146/annurev.biochem.75.103004.142637

    Article  CAS  PubMed  Google Scholar 

  11. Nathan BP, Chang KC, Bellosta S, Brisch E, Ge N, Mahley RW, Pitas RE (1995) The inhibitory effect of apolipoprotein E4 on neurite outgrowth is associated with microtubule depolymerization. J Biol Chem 270(34):19791–19799

    Article  CAS  PubMed  Google Scholar 

  12. Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, Raina AK, Vinters HV et al (2003) Microtubule reduction in Alzheimer’s disease and aging is independent of filament formation. Am J Pathol 162(5):1623–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hempen B, Brion JP (1996) Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. J Neuropathol Exp Neurol 55(9):964–972

    Article  CAS  PubMed  Google Scholar 

  14. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y et al (2002) In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 21(24):6820–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Silva DF, Esteves AR, Oliveira CR, Cardoso SM (2011) Mitochondria: the common upstream driver of amyloid-beta and pathology in Alzheimer’s disease. Curr Alzheimer Res 8(5):563–572

    Article  CAS  PubMed  Google Scholar 

  16. Cardoso SM, Santana I, Swerdlow RH, Oliveira CR (2004) Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. J Neurochem 89(6):1417–1426. doi:10.1111/j.1471-4159.2004.02438.x

    Article  CAS  PubMed  Google Scholar 

  17. Trimmer PA, Swerdlow RH, Parks JK, Keeney P, Bennett JP Jr, Miller SW, Davis RE, Parker WD Jr (2000) Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 162(1):37–50. doi:10.1006/exnr.2000.7333

    Article  CAS  PubMed  Google Scholar 

  18. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13(1):72–78. doi:10.1002/ana.410130116

    Article  CAS  PubMed  Google Scholar 

  19. Saraiva AA, Borges MM, Madeira MD, Tavares MA, Paula-Barbosa MM (1985) Mitochondrial abnormalities in cortical dendrites from patients with Alzheimer’s disease. J Submicrosc Cytol 17(3):459–464

    CAS  PubMed  Google Scholar 

  20. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45(8):836–840

    Article  CAS  PubMed  Google Scholar 

  21. Zhu X, Perry G, Smith MA, Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimer’s Dis : JAD 33(Suppl 1):S253–S262. doi:10.3233/JAD-2012-129005

    PubMed  PubMed Central  Google Scholar 

  22. Terry RD (1998) The cytoskeleton in Alzheimer disease. J Neural Transm Suppl 53:141–145

    Article  CAS  PubMed  Google Scholar 

  23. Li W, Zhang B, Tang J, Cao Q, Wu Y, Wu C, Guo J, Ling EA et al (2007) Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J Neurosci : Off J Soc Neurosci 27(10):2606–2616. doi:10.1523/JNEUROSCI.4181-06.2007

    Article  Google Scholar 

  24. Pandithage R, Lilischkis R, Harting K, Wolf A, Jedamzik B, Luscher-Firzlaff J, Vervoorts J, Lasonder E et al (2008) The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility. J Cell Biol 180(5):915–929. doi:10.1083/jcb.200707126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki K, Koike T (2007) Mammalian Sir2-related protein (SIRT) 2-mediated modulation of resistance to axonal degeneration in slow Wallerian degeneration mice: a crucial role of tubulin deacetylation. Neuroscience 147(3):599–612. doi:10.1016/j.neuroscience.2007.04.059

    Article  CAS  PubMed  Google Scholar 

  26. Encalada SE, Goldstein LS (2014) Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annu Rev Biophys 43:141–169. doi:10.1146/annurev-biophys-051013-022746

    Article  CAS  PubMed  Google Scholar 

  27. Trimmer PA, Borland MK (2005) Differentiated Alzheimer’s disease transmitochondrial cybrid cell lines exhibit reduced organelle movement. Antioxid Redox Signal 7(9–10):1101–1109. doi:10.1089/ars.2005.7.1101

    Article  CAS  PubMed  Google Scholar 

  28. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci : Off J Soc Neurosci 28(27):6926–6937. doi:10.1523/JNEUROSCI.0800-08.2008

    Article  CAS  Google Scholar 

  29. Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M (2013) Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol 106–107:33–54. doi:10.1016/j.pneurobio.2013.06.002

    Article  PubMed  Google Scholar 

  30. Butler D, Hwang J, Estick C, Nishiyama A, Kumar SS, Baveghems C, Young-Oxendine HB, Wisniewski ML et al (2011) Protective effects of positive lysosomal modulation in Alzheimer’s disease transgenic mouse models. PLoS One 6(6):e20501. doi:10.1371/journal.pone.0020501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM et al (2014) Enhancing astrocytic lysosome biogenesis facilitates Abeta clearance and attenuates amyloid plaque pathogenesis. J Neurosci : Off J Soc Neurosci 34(29):9607–9620. doi:10.1523/JNEUROSCI.3788-13.2014

    Article  Google Scholar 

  32. Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I (2012) Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 96(1):87–95. doi:10.1016/j.pneurobio.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  33. Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E et al (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 3:1016. doi:10.1038/ncomms2016

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117(5):856–867. doi:10.1111/j.1471-4159.2011.07253.x

    Article  CAS  PubMed  Google Scholar 

  35. Perry G, Mulvihill P, Fried VA, Smith HT, Grundke-Iqbal I, Iqbal K (1989) Immunochemical properties of ubiquitin conjugates in the paired helical filaments of Alzheimer disease. J Neurochem 52(5):1523–1528

    Article  CAS  PubMed  Google Scholar 

  36. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(Pt 23):4081–4091. doi:10.1242/jcs.019265

    Article  CAS  PubMed  Google Scholar 

  37. Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C, Medina D, de Pablo R, Tacchetti C et al (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17(1):119–129. doi:10.1093/hmg/ddm289

    Article  CAS  PubMed  Google Scholar 

  38. Lee S, Sato Y, Nixon RA (2011) Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy. Autophagy 7(12):1562–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, LaFerla FM (2008) Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phospho. J Neurosci : Off J Soc Neurosci 28(45):11500–11510. doi:10.1523/JNEUROSCI.3203-08.2008

    Article  CAS  Google Scholar 

  40. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of -induced neurodegeneration. Acta Neuropathol 118(1):53–69. doi:10.1007/s00401-009-0486-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai Z, Zhou Y, Liu Z, Ke Z, Zhao B (2015) Autophagy dysfunction upregulates beta-amyloid peptides via enhancing the activity of gamma-secretase complex. Neuropsychiatr Dis Treat 11:2091–2099. doi:10.2147/NDT.S84755

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M et al (2005) Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98. doi:10.1083/jcb.200505082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  44. Zhang F, Su B, Wang C, Siedlak SL, Mondragon-Rodriguez S, Lee HG, Wang X, Perry G et al (2015) Posttranslational modifications of alpha-tubulin in Alzheimer disease. Translat Neurodegenera 4:9. doi:10.1186/s40035-015-0030-4

    Article  Google Scholar 

  45. Reddy PH (2014) Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction. J Alzheimer’s Dis : JAD 40(2):245–256. doi:10.3233/JAD-132060

    PubMed  PubMed Central  Google Scholar 

  46. Gan X, Huang S, Wu L, Wang Y, Hu G, Li G, Zhang H, Yu H et al (2014) Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell. Biochim Biophys Acta 1842(2):220–231. doi:10.1016/j.bbadis.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  47. Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neruomol Med 5(2):147–162. doi:10.1385/NMM:5:2:147

    Article  CAS  Google Scholar 

  48. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci : Off J Soc Neurosci 29(28):9090–9103. doi:10.1523/JNEUROSCI.1357-09.2009

    Article  CAS  Google Scholar 

  49. Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173(2):470–482. doi:10.2353/ajpath.2008.071208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Esteves AR, Santos MGFD, Januario C, Cardoso SM (2015) The Upshot of LRRK2 Inhibition to Parkinson’s disease paradigm. Mol Neurobiol 52(3):1804–1820. doi:10.1007/s12035-014-8980-6

    Article  CAS  PubMed  Google Scholar 

  51. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D et al (2011) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain : J Neurol 134(Pt 1):258–277. doi:10.1093/brain/awq341

    Article  Google Scholar 

  52. Nilsson P, Saido TC (2014) Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Abeta peptide. BioEssays : News Rev Molec, Cell Dev Biol 36(6):570–578. doi:10.1002/bies.201400002

    Article  CAS  Google Scholar 

  53. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N et al (2013) Abeta secretion and plaque formation depend on autophagy. Cell Rep 5(1):61–69. doi:10.1016/j.celrep.2013.08.042

    Article  CAS  PubMed  Google Scholar 

  54. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199. doi:10.1172/JCI33585

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss-Coray T (2010) Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 5(6):e11102. doi:10.1371/journal.pone.0011102

    Article  PubMed  PubMed Central  Google Scholar 

  56. Goldstein LS (2012) Axonal transport and neurodegenerative disease: can we see the elephant? Prog Neurobiol 99(3):186–190. doi:10.1016/j.pneurobio.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  57. Millecamps S, Julien JP (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176. doi:10.1038/nrn3380

    Article  CAS  PubMed  Google Scholar 

  58. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  PubMed  Google Scholar 

  59. Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, Torres M, Baglietto-Vargas D, Moreno-Gonzalez I, De Castro V, Jimenez S et al (2012) Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 123(1):53–70. doi:10.1007/s00401-011-0896-x

    Article  PubMed  Google Scholar 

  60. Silva DF, Esteves AR, Arduino DM, Oliveira CR, Cardoso SM (2011) Amyloid-beta-induced mitochondrial dysfunction impairs the autophagic lysosomal pathway in a tubulin dependent pathway. J Alzheimer’s Dis : JAD 26(3):565–581. doi:10.3233/JAD-2011-110423

    CAS  PubMed  Google Scholar 

  61. Miyasaka T, Sato S, Tatebayashi Y, Takashima A (2010) Microtubule destruction induces liberation and its subsequent phosphorylation. FEBS Lett 584(14):3227–3232. doi:10.1016/j.febslet.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  62. Mondragon-Rodriguez S, Perry G, Luna-Munoz J, Acevedo-Aquino MC, Williams S (2014) Phosphorylation of protein at sites Ser(396–404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol 40(2):121–135. doi:10.1111/nan.12084

    Article  CAS  PubMed  Google Scholar 

  63. Ding H, Matthews TA, Johnson GV (2006) Site-specific phosphorylation and caspase cleavage differentially impact -microtubule interactions and aggregation. J Biol Chem 281(28):19107–19114. doi:10.1074/jbc.M511697200

    Article  CAS  PubMed  Google Scholar 

  64. Xie R, Nguyen S, McKeehan WL, Liu L (2010) Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 11:89. doi:10.1186/1471-2121-11-89

    Article  PubMed  PubMed Central  Google Scholar 

  65. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol : CB 16(21):2166–2172. doi:10.1016/j.cub.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  66. Bendiske J, Bahr BA (2003) Lysosomal activation is a compensatory response against protein accumulation and associated synaptopathogenesis—an approach for slowing Alzheimer disease? J Neuropathol Exp Neurol 62(5):451–463

    Article  CAS  PubMed  Google Scholar 

  67. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM et al (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317(5837):516–519. doi:10.1126/science.1143780

    Article  CAS  PubMed  Google Scholar 

  68. Hasegawa T, Baba T, Kobayashi M, Konno M, Sugeno N, Kikuchi A, Itoyama Y, Takeda A (2010) Role of TPPP/p25 on alpha-synuclein-mediated oligodendroglial degeneration and the protective effect of SIRT2 inhibition in a cellular model of multiple system atrophy. Neurochem Int 57(8):857–866. doi:10.1016/j.neuint.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  69. Luthi-Carter R, Taylor DM, Pallos J, Lambert E, Amore A, Parker A, Moffitt H, Smith DL et al (2010) SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc Natl Acad Sci U S A 107(17):7927–7932. doi:10.1073/pnas.1002924107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gal J, Bang Y, Choi HJ (2012) SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition. Neurochem Int 61(7):992–1000. doi:10.1016/j.neuint.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  71. Spires-Jones TL, Fox LM, Rozkalne A, Pitstick R, Carlson GA, Kazantsev AG (2012) Inhibition of Sirtuin 2 with sulfobenzoic acid derivative AK1 is non-toxic and potentially neuroprotective in a mouse model of frontotemporal dementia. Front Pharmacol 3:42. doi:10.3389/fphar.2012.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miller SW, Trimmer PA, Parker WD Jr, Davis RE (1996) Creation and characterization of mitochondrial DNA-depleted cell lines with “neuronal-like” properties. J Neurochem 67(5):1897–1907

    Article  CAS  PubMed  Google Scholar 

  73. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE et al (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40(4):663–671. doi:10.1002/ana.410400417

    Article  CAS  PubMed  Google Scholar 

  74. Serrano L, Martinez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N et al (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27(6):639–653. doi:10.1101/gad.211342.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Agostinho P, Oliveira CR (2003) Involvement of calcineurin in the neurotoxic effects induced by amyloid-beta and prion peptides. Eur J Neurosci 17(6):1189–1196

    Article  PubMed  Google Scholar 

  76. Ferrer I, Santpere G, Arzberger T, Bell J, Blanco R, Boluda S, Budka H, Carmona M et al (2007) Brain protein preservation largely depends on the postmortem storage temperature: implications for study of proteins in human neurologic diseases and management of brain banks: a BrainNet Europe Study. J Neuropathol Exp Neurol 66(1):35–46. doi:10.1097/nen.0b013e31802c3e7d

    Article  CAS  PubMed  Google Scholar 

  77. Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284(20):13843–13855. doi:10.1074/jbc.M808515200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cregan SP, MacLaurin JG, Craig CG, Robertson GS, Nicholson DW, Park DS, Slack RS (1999) Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci : Off J Soc Neurosci 19(18):7860–7869

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Russell H Swerdlow for providing the AD patient samples. Human brain samples were obtained from the Neurological Tissue Bank, Biobanc-Hospital Clinic-IDIBAPS and from a generous gift from Professor I Ferrer Abizanda, Bellvitge Hospital Universitari, Institut Català de la Salut, Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Cardoso.

Ethics declarations

Funding

This work was supported by funds from PEst-C/SAU/LA0001/2011-2013 to SM Cardoso. AR Esteves and DF Silva are supported by postdoctoral fellowships from the Portuguese Foundation for Science and Technology (FCT-MCTES, Portugal).

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.F., Esteves, A.R., Oliveira, C.R. et al. Mitochondrial Metabolism Power SIRT2-Dependent Deficient Traffic Causing Alzheimer’s-Disease Related Pathology. Mol Neurobiol 54, 4021–4040 (2017). https://doi.org/10.1007/s12035-016-9951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9951-x

Keywords

Navigation