Skip to main content
Log in

The Upshot of LRRK2 Inhibition to Parkinson’s Disease Paradigm

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Mutations in leucine-rich repeat kinase 2 gene (LRRK2) are implicated in autosomal dominant familial and sporadic Parkinson’s disease (sPD). Given its relative frequency in PD and its putative function in several cellular pathways that are known to be impaired in the disease, we wanted to tackle LRRK2 physiological role and to address its potential as a PD therapeutic target. We investigated the impact of pharmacological inhibition of LRRK2 kinase activity in control and PD cell function. We provide evidence that physiologically LRRK2, through its kinase activity, regulates mitochondrial fission events and facilitates autophagic degradation by modulating lysosomal cellular localization. Upon LRRK2 inhibition, normal fission decreases, leading to the elongation of mitochondrial network which contributes to a poor degradation of deficient mitochondria. Moreover, LRRK2 inhibition promotes lysosomal perinuclear clustering, through Rab7 that further hinders autophagosomes degradation. These events induce a decrease in the autophagic flow, which contributed directly to a decreased proteolytic degradation of damaged mitochondria. These data resembled the results observed in sPD cells. Interestingly, the LRRK2 kinase activity is increased in sPD cells, and despite its inhibition recovers mitochondrial cellular localization, it did not improve microtubule network-dependent trafficking. Our results provide novel insights into the multiple mechanisms that dictate the association between LRRK2 and mitophagy in sPD, and contribute with new findings that could have important therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44:595–600

    Article  CAS  PubMed  Google Scholar 

  2. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  CAS  PubMed  Google Scholar 

  3. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102:16842–16847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simon-Sanchez J, Schulte C, Bras JM et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41:1308–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rideout HJ, Stefanis L (2014) The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson’s disease. Neurochem Res 39:576–592

    Article  CAS  PubMed  Google Scholar 

  6. Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z (2006) Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 281:36303–36316

    Article  CAS  PubMed  Google Scholar 

  7. Kett LR, Boassa D, Ho CC, Rideout HJ, Hu J, Terada M, Ellisman M, Dauer WT (2012) LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet 21:890–899

    Article  CAS  PubMed  Google Scholar 

  8. Gillardon F (2009) Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability—a point of convergence in parkinsonian neurodegeneration? J Neurochem 110:1514–1522

    Article  CAS  PubMed  Google Scholar 

  9. Meixner A, Boldt K, Van Troys M, Askenazi M, Gloeckner CJ, Bauer M, Marto JA, Ampe C, Kinkl N, Ueffing M (2011) A QUICK screen for Lrrk2 interaction partners–leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol Cell Proteomics 10(M110):001172

    PubMed  Google Scholar 

  10. MacRae TH (1997) Tubulin post-translational modifications—enzymes and their mechanisms of action. Eur J Biochem 244:265–278

    Article  CAS  PubMed  Google Scholar 

  11. Manzoni C (2012) LRRK2 and autophagy: a common pathway for disease. Biochem Soc Trans 40:1147–1151

    Article  CAS  PubMed  Google Scholar 

  12. Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18:4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beilina A, Rudenko IN, Kaganovich A, Civiero L, Chau H, Kalia SK, Kalia LV, Lobbestael E, Chia R, Ndukwe K, Ding J, Nalls MA, International Parkinson's Disease Genomics C, North American Brain Expression C, Olszewski M, Hauser DN, Kumaran R, Lozano AM, Baekelandt V, Greene LE, Taymans JM, Greggio E, Cookson MR (2014) Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A 111:2626–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dodson MW, Zhang T, Jiang C, Chen S, Guo M (2012) Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum Mol Genet 21:1350–1363

    Article  CAS  PubMed  Google Scholar 

  16. Tong Y, Giaime E, Yamaguchi H, Ichimura T, Liu Y, Si H, Cai H, Bonventre JV, Shen J (2012) Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ 3rd, Shen J (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 107:9879–9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chan K, Truong D, Shangari N, O'Brien PJ (2005) Drug-induced mitochondrial toxicity. Expert Opin Drug Metab Toxicol 1:655–669

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21:1931–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201:34–39

    Article  CAS  PubMed  Google Scholar 

  21. Su YC, Qi X (2013) Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet 22:4545–4561

    Article  CAS  PubMed  Google Scholar 

  22. Trimmer PA, Borland MK, Keeney PM, Bennett JP Jr, Parker WD Jr (2004) Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 88:800–812

    Article  CAS  PubMed  Google Scholar 

  23. Esteves AR, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons KE, Pahwa R, Burns JM, Cardoso SM, Swerdlow RH (2010) Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson's subject mitochondrial transfer. J Neurochem 113:674–682

    Article  CAS  PubMed  Google Scholar 

  24. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2009) Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson's disease cybrids. Antioxid Redox Signal 11:439–448

    Article  CAS  PubMed  Google Scholar 

  25. Deng X, Dzamko N, Prescott A, Davies P, Liu Q, Yang Q, Lee JD, Patricelli MP, Nomanbhoy TK, Alessi DR, Gray NS (2011) Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nat Chem Biol 7:203–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Esteves AR, Gozes I, Cardoso SM (2014) The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Biochim Biophys Acta 1842:7–21

    Article  CAS  PubMed  Google Scholar 

  28. Martins-Branco D, Esteves AR, Santos D, Arduino DM, Swerdlow RH, Oliveira CR, Januario C, Cardoso SM (2012) Ubiquitin proteasome system in Parkinson's disease: a keeper or a witness? Exp Neurol 238:89–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krige D, Carroll MT, Cooper JM, Marsden CD, Schapira AH (1992) Platelet mitochondrial function in Parkinson's disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 32:782–788

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  31. Misiuta IE, Saporta S, Sanberg PR, Zigova T, Willing AE (2006) Influence of retinoic acid and lithium on proliferation and dopaminergic potential of human NT2 cells. J Neurosci Res 83:668–679

    Article  CAS  PubMed  Google Scholar 

  32. Sodja C, Fang H, Dasgupta T, Ribecco M, Walker PR, Sikorska M (2002) Identification of functional dopamine receptors in human teratocarcinoma NT2 cells. Brain Res Mol Brain Res 99:83–91

    Article  CAS  PubMed  Google Scholar 

  33. Swerdlow RH, Parks JK, Cassarino DS, Maguire DJ, Maguire RS, Bennett JP Jr, Davis RE, Parker WD Jr (1997) Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49:918–925

    Article  CAS  PubMed  Google Scholar 

  34. Binder DR, Dunn WH Jr, Swerdlow RH (2005) Molecular characterization of mtDNA depleted and repleted NT2 cell lines. Mitochondrion 5:255–265

    Article  CAS  PubMed  Google Scholar 

  35. Cardoso SM, Rego AC, Penacho N, Oliveira CR (2004) Apoptotic cell death induced by hydrogen peroxide in NT2 parental and mitochondrial DNA depleted cells. Neurochem Int 45:693–698

    Article  CAS  PubMed  Google Scholar 

  36. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr (1996) Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol 40:663–671

    Article  CAS  PubMed  Google Scholar 

  37. Miller SW, Trimmer PA, Parker WD Jr, Davis RE (1996) Creation and characterization of mitochondrial DNA-depleted cell lines with “neuronal-like” properties. J Neurochem 67:1897–1907

    Article  CAS  PubMed  Google Scholar 

  38. Arduino DM, Esteves AR, Cortes L, Silva DF, Patel B, Grazina M, Swerdlow RH, Oliveira CR, Cardoso SM (2012) Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic. Hum Mol Genet 21:4680–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joshi HC, Cleveland DW (1989) Differential utilization of beta-tubulin isotypes in differentiating neurites. J Cell Biol 109:663–673

    Article  CAS  PubMed  Google Scholar 

  40. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 107:18670–18675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bandyopadhyay D, Cyphersmith A, Zapata JA, Kim YJ, Payne CK (2014) Lysosome transport as a function of lysosome diameter. PLoS One 9:e86847

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232

    Article  CAS  PubMed  Google Scholar 

  44. Esteves AR, Domingues AF, Ferreira IL, Januario C, Swerdlow RH, Oliveira CR, Cardoso SM (2008) Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion 8:219–228

    Article  CAS  PubMed  Google Scholar 

  45. Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser (910)/Ser (935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430:405–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nichols RJ, Dzamko N, Morrice NA, Campbell DG, Deak M, Ordureau A, Macartney T, Tong Y, Shen J, Prescott AR, Alessi DR (2010) 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J 430:393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stafa K, Tsika E, Moser R, Musso A, Glauser L, Jones A, Biskup S, Xiong Y, Bandopadhyay R, Dawson VL, Dawson TM, Moore DJ (2014) Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet 23:2055–2077

    Article  CAS  PubMed  Google Scholar 

  48. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santos D, Cardoso SM (2012) Mitochondrial dynamics and neuronal fate in Parkinson's disease. Mitochondrion 12:428–437

    Article  CAS  PubMed  Google Scholar 

  50. Arduino DM, Esteves AR, Cardoso SM (2011) Mitochondrial fusion/fission, transport and autophagy in Parkinson’s disease: when mitochondria get nasty. Parkinsons Dis 2011:767230

    PubMed  PubMed Central  Google Scholar 

  51. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19:4861–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191:1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Glauser L, Sonnay S, Stafa K, Moore DJ (2011) Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J Neurochem.

  54. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Ramirez MB, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K (2014) A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation. J Biol Chem 289:895–908

    Article  CAS  PubMed  Google Scholar 

  56. Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing DA, Beal MF, Troncoso JC, McCaffery JM, Jenkins NA, Copeland NG, Galter D, Thomas B, Lee MK, Dawson TM, Dawson VL, Moore DJ (2011) Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6:e18568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52:587–593

    Article  CAS  PubMed  Google Scholar 

  58. MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77:425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu LL, Cheng Y, Liu B (2013) Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol 45:921–924

    Article  CAS  PubMed  Google Scholar 

  61. Manzoni C, Mamais A, Dihanich S, Abeti R, Soutar MP, Plun-Favreau H, Giunti P, Tooze SA, Bandopadhyay R, Lewis PA (2013) Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta 1833:2900–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N, Saftig P, Uchiyama Y (2005) Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am J Pathol 167:1713–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V, Kaushik S, Klionsky DJ (2009) In search of an “autophagomometer”. Autophagy 5:585–589

    Article  CAS  PubMed  Google Scholar 

  64. Bains M, Heidenreich KA (2009) Live-cell imaging of autophagy induction and autophagosome-lysosome fusion in primary cultured neurons. Methods Enzymol 453:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K (2013) Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta 1833:503–510

    Article  CAS  PubMed  Google Scholar 

  66. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yao C, Johnson WM, Gao Y, Wang W, Zhang J, Deak M, Alessi DR, Zhu X, Mieyal JJ, Roder H, Wilson-Delfosse AL, Chen SG (2013) Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Hum Mol Genet 22:328–344

    Article  CAS  PubMed  Google Scholar 

  68. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5

  69. Cardoso SM (2011) The mitochondrial cascade hypothesis for Parkinson’s disease. Curr Pharm Des 17:3390–3397

    Article  CAS  PubMed  Google Scholar 

  70. Jahani-Asl A, Germain M, Slack RS (2010) Mitochondria: joining forces to thwart cell death. Biochim Biophys Acta 1802:162–166

    Article  CAS  PubMed  Google Scholar 

  71. Scott I, Youle RJ (2010) Mitochondrial fission and fusion. Essays Biochem 47:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Niu J, Yu M, Wang C, Xu Z (2012) Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J Neurochem 122:650–658

    Article  CAS  PubMed  Google Scholar 

  73. Qi X, Qvit N, Su YC, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Biskup S, Moore DJ, Celsi F, Higashi S, West AB, Andrabi SA, Kurkinen K, Yu SW, Savitt JM, Waldvogel HJ, Faull RL, Emson PC, Torp R, Ottersen OP, Dawson TM, Dawson VL (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60:557–569

    Article  CAS  PubMed  Google Scholar 

  75. Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J, Hsu CH, Segal L, Raghavan K, Matsumoto K, Hisamoto N, Kuwahara T, Iwatsubo T, Moore L, Goldstein L, Cookson M, Wolozin B (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29:9210–9218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189:671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4:85–87

    Article  CAS  PubMed  Google Scholar 

  78. Esteves AR, Swerdlow RH, Cardoso SM (2014) LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Neurol, Exp

    Google Scholar 

  79. Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR (2007) LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson’s disease mutants affect kinase activity. Biochem J 405:307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H (2009) Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron 64:807–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H (2009) Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. J Neurosci 29:13971–13980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gandhi PN, Wang X, Zhu X, Chen SG, Wilson-Delfosse AL (2008) The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. J Neurosci Res 86:1711–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Esteves AR, Arduino DM, Swerdlow RH, Oliveira CR, Cardoso SM (2010) Microtubule depolymerization potentiates alpha-synuclein oligomerization. Front Aging Neurosci 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  84. Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CC, Whitworth AJ, De Vos KJ (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5:5245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Webb JL, Ravikumar B, Rubinsztein DC (2004) Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 36:2541–2550

    Article  CAS  PubMed  Google Scholar 

  87. Gomez-Suaga P, Rivero-Rios P, Fdez E, Blanca Ramirez M, Ferrer I, Aiastui A, Lopez De Munain A, Hilfiker S (2014) LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Genet, Hum Mol

    Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by Portuguese Foundation for Science and Technology (FCT-MCTES, Portugal) (funds from PTDC/SAU-NEU/102710/2008 to SM Cardoso and PEst-C/SAU/LA0001/2011). AR Esteves is supported by Post-Doctoral Fellowship and D Santos is supported by PhD Fellowship from FCT-MCTES, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Cardoso.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

IN-1 does not affect cellular proliferation. MTT reduction ability assay of CT and sPD cells in the presence of several IN-1 concentrations. Data is reported as the fold increase over untreated CT cybrids. N = 3. (GIF 1329 kb)

High Resolution Image (TIFF 552 kb)

Supplementary Fig. 2

Mitochondria are ubiquitinated and signaled for degradation in sPD cells. a Representative imunoblot of mitochondrial and cytosolic Parkin of CT and sPD cybrids. b Densitometric analysis of Parkin levels. Data is reported as the fold increase over untreated CT cybrids. The blots were reprobed for Hsp60 and GAPDH to confirm equal protein loading and to confirm fraction purity. N = 3, *p < 0.05 significantly different relatively to untreated CT cybrid. c Co-immunoprecipitation of Mitofusin1 and ubiquitin in CT and PD cybrids. d Determination of Mitofusin 1/ubiquitin physical interaction. Data is reported as the fold increase over untreated CT cybrids. N = 3 *p < 0.05 significantly different relatively to untreated CT cybrid. (GIF 1819 kb)

High Resolution Image (TIFF 1848 kb)

Supplementary Figure 3

The essential activator of autophagy, Beclin1 is not affected upon exposure to IN-1. a Representative immunoblot for Beclin1 from CT and PD cybrids after treatment with or without IN-1. b Densitometric analysis of endogenous levels of Beclin1. Data is reported as the fold increase over untreated CT cybrids. The blots were reprobed for α-Tubulin to confirm equal protein loading. N = 3. (GIF 1450 kb)

High Resolution Image (TIFF 2579 kb)

Supplementary Figure 4

a The number of LC3B dots was quantified with ImageJ. Data is reported as absolute values. *p < 0.05, **p < 0.01 and ***p < 0.001, significantly different when compared to untreated CT cybrid cells; && p < 0.01, significantly different when compared to NL-treated CT cybrid cells. b Lamp1 fluorescence intensity was calculated after morphometric quantification of cells stained as the ones shown here. Data is reported as absolute values. *p < 0.05, ***p < 0.001, significantly different when compared to untreated CT cybrid cells; ##p < 0.01, significantly different when compared to untreated PD cybrid cells. (GIF 1381 kb)

High Resolution Image (TIFF 2385 kb)

Supplementary Figure 5

HDAC6 content is not altered in the presence of IN-1. a Representative immunoblot of HDAC6. b Densitometric analysis of HDAC6. Data is reported as the fold increase over untreated CT cybrids. The blots were reprobed for α-Tubulin to confirm equal protein loading. N = 4. (GIF 1422 kb)

High Resolution Image (TIFF 907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteves, A.R., G-Fernandes, M., Santos, D. et al. The Upshot of LRRK2 Inhibition to Parkinson’s Disease Paradigm. Mol Neurobiol 52, 1804–1820 (2015). https://doi.org/10.1007/s12035-014-8980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8980-6

Keywords

Navigation