Skip to main content

Biomarkers of Neurotoxicity Inform Mechanisms of Vulnerability and Resilience in Dopaminergic Neurons

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Vulnerable pathways and associated stress biomarkers characteristic of neurons may be used to identify the chemical triggers for neurodegenerative diseases. For example, the dopaminergic neurons that die in Parkinson’s disease patients have massive axonal arbors and intense energetic demands that leave them vulnerable to inhibition of energy production. Rotenone, 6-hydroxydopamine, and MPTP/MPP+ (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydrodropyridine and its toxic metabolite 1-methyl-4-phenylpyridinium) inhibit mitochondrial energy production and selectively kill these dopaminergic neurons to cause parkinsonism. LUHMES immortalized dopaminergic neurons are particularly vulnerable to inhibition of oxidative energy metabolism, to oxidative stressors such as 6-hydroxydopamine, to inhibition of glutathione regeneration, and to disruption of metal ion metabolism that is required for mitochondrial oxidative energy metabolism. These studies revealed an integral relationship between oxidative stress and free iron and identified Metallothionein 1G (MT1G) as a biomarker gene that responded dynamically to a wide variety of neurotoxicants in LUHMES neurons. In the brain, neurons depend on astrocytes to supply lactate as a source of metabolic energy, glutathione or its precursors to detoxify oxidative threats, and metallothioneins to protect neurons from free metal ions and oxidative threats. Resilience to these threats depends on reciprocal exchange of metal ions between metallothioneins and metal-responsive transcription factor 1 (MTF1 and likely MTF2). This neuronal model and the MT1G biomarker will be used to screen libraries of environmental toxicants to identify candidate causes of neurodegenerative disease. Follow-up studies will clarify which toxicants attack vulnerable pathways and bypass the bodies’ defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6HD:

6-Hydroxydopamine

AD:

Alzheimer’s disease

ANLS:

Astrocyte-neuron lactate shuttle

BSO:

Buthionine sulfoximine

DMPS:

3-Dimercapto-1-propanesulfonic acid

ETC:

Mitochondrial electron transport chain

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

HTS:

High-throughput screening

LUHMES:

Lund human mesencephalic neuronal cells

MAP:

4-(Methylamino)phenol hemisulfate

MPP+:

1-Methyl-4-phenylpyridinium

MPTP:

1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydrodropyridine

MT:

Metallothionein

MT1G:

Metallothionein 1G

MTF1:

Metal-responsive transcription factor 1

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SH-SY5Y:

Human neuroblastoma cell line

References

  • Ahlskog, J. E. (2009). Parkin and PINK1 parkinsonism may represent nigral mitochondrial cytopathies distinct from Lewy body Parkinson’s disease. Parkinsonism & Related Disorders, 15, 721–727.

    Article  Google Scholar 

  • Ashrafi, G., & Ryan, T. A. (2017). Glucose metabolism in nerve terminals. Current Opinion in Neurobiology, 45, 156–161.

    Article  Google Scholar 

  • Carrasco, J., Penkowa, M., Hadberg, H., Molinero, A., & Hidalgo, J. (2000). Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice. The European Journal of Neuroscience, 12, 2311–2322.

    Article  Google Scholar 

  • Chung, R. S., Vickers, J. C., Chuah, M. I., Eckhardt, B. L., & West, A. K. (2002). Metallothionein-III inhibits initial neurite formation in developing neurons as well as postinjury, regenerative neurite sprouting. Experimental Neurology, 178, 1–12.

    Article  Google Scholar 

  • Delp, J., Gutbier, S., Klima, S., Hoelting, L., Pinto-Gil, K., Hsieh, J. H., Aichem, M., Klein, K., Schreiber, F., Tice, R. R., et al. (2018). A high-throughput approach to identify specific neurotoxicants/developmental toxicants in human neuronal cell function assays. ALTEX, 35, 235–253.

    Article  Google Scholar 

  • Domingo, A., & Klein, C. (2018). Genetics of Parkinson disease. Handbook of Clinical Neurology, 147, 211–227.

    Article  Google Scholar 

  • Dringen, R., & Hirrlinger, J. (2003). Glutathione pathways in the brain. Biological Chemistry, 384, 505–516.

    Article  Google Scholar 

  • Dringen, R., Brandmann, M., Hohnholt, M. C., & Blumrich, E. M. (2015). Glutathione-dependent detoxification processes in astrocytes. Neurochemical Research, 40, 2570–2582.

    Article  Google Scholar 

  • Gokce, O., Stanley, G. M., Treutlein, B., Neff, N. F., Camp, J. G., Malenka, R. C., Rothwell, P. E., Fuccillo, M. V., Sudhof, T. C., & Quake, S. R. (2016). Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-Seq. Cell Reports, 16, 1126–1137.

    Article  Google Scholar 

  • Gutbier, S., Kyriakou, S., Schildknecht, S., Uckert, A. K., Brull, M., Lewis, F., Dickens, D., Pearson, L., Elson, J. L., Michel, S., et al. (2020). Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Archives of Toxicology, 94, 3105–3123.

    Article  Google Scholar 

  • Hashimoto, K., Hayashi, Y., Watabe, K., Inuzuka, T., & Hozumi, I. (2011). Metallothionein-III prevents neuronal death and prolongs life span in amyotrophic lateral sclerosis model mice. Neuroscience, 189, 293–298.

    Article  Google Scholar 

  • He, J., Huang, C., Jiang, J., & Lv, L. (2013). Propofol exerts hippocampal neuron protective effects via up-regulation of metallothionein-3. Neurological Sciences, 34, 165–171.

    Article  Google Scholar 

  • Hung, A. Y., & Schwarzschild, M. A. (2020). Approaches to disease modification for Parkinson’s disease: Clinical trials and lessons learned. Neurotherapeutics, 17, 1393–1405.

    Article  Google Scholar 

  • Iglesias-Gonzalez, J., Sanchez-Iglesias, S., Mendez-Alvarez, E., Rose, S., Hikima, A., Jenner, P., & Soto-Otero, R. (2012). Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: Protective role of catalase and superoxide dismutase. Neurochemical Research, 37, 2150–2160.

    Article  Google Scholar 

  • Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E., Jellinger, K., & Youdim, M. B. (1996). Dopamine, 6-hydroxydopamine, iron, and dioxygen – Their mutual interactions and possible implication in the development of Parkinson’s disease. Biochimica et Biophysica Acta, 1316, 160–168.

    Article  Google Scholar 

  • Marais, A. D. (2019). Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology, 51, 165–176.

    Article  Google Scholar 

  • Maret, W. (1994). Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proceedings of the National Academy of Sciences of the United States of America, 91, 237–241.

    Article  Google Scholar 

  • Mason, S. (2017). Lactate shuttles in neuroenergetics-homeostasis, allostasis and beyond. Frontiers in Neuroscience, 11, 43.

    Article  Google Scholar 

  • Matsuda, W., Furuta, T., Nakamura, K. C., Hioki, H., Fujiyama, F., Arai, R., & Kaneko, T. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. The Journal of Neuroscience, 29, 444–453.

    Article  Google Scholar 

  • Moreno-Garcia, A., Kun, A., Calero, M., & Calero, O. (2021). The neuromelanin paradox and its dual role in oxidative stress and neurodegeneration. Antioxidants (Basel), 10, 124.

    Google Scholar 

  • Mullane, K., & Williams, M. (2020). Alzheimer’s disease beyond amyloid: Can the repetitive failures of amyloid-targeted therapeutics inform future approaches to dementia drug discovery? Biochemical Pharmacology, 177, 113945.

    Article  Google Scholar 

  • Pan, T., Rawal, P., Wu, Y., Xie, W., Jankovic, J., & Le, W. (2009). Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 164, 541–551.

    Article  Google Scholar 

  • Pihlstrom, L., Wiethoff, S., & Houlden, H. (2017). Genetics of neurodegenerative diseases: An overview. Handbook of Clinical Neurology, 145, 309–323.

    Article  Google Scholar 

  • Pissadaki, E. K., & Bolam, J. P. (2013). The energy cost of action potential propagation in dopamine neurons: Clues to susceptibility in Parkinson’s disease. Frontiers in Computational Neuroscience, 7, 13.

    Article  Google Scholar 

  • Riederer, P., Berg, D., Casadei, N., Cheng, F., Classen, J., Dresel, C., Jost, W., Kruger, R., Muller, T., Reichmann, H., et al. (2019). alpha-Synuclein in Parkinson’s disease: Causal or bystander? Journal of Neural Transmission (Vienna), 126, 815–840.

    Article  Google Scholar 

  • Sarkar, S., Gough, B., Raymick, J., Beaudoin, M. A., Ali, S. F., Virmani, A., & Binienda, Z. K. (2015). Histopathological and electrophysiological indices of rotenone-evoked dopaminergic toxicity: Neuroprotective effects of acetyl-L-carnitine. Neuroscience Letters, 606, 53–59.

    Article  Google Scholar 

  • Schildknecht, S., Di Monte, D. A., Pape, R., Tieu, K., & Leist, M. (2017). Tipping points and endogenous determinants of nigrostriatal degeneration by MPTP. Trends in Pharmacological Sciences, 38, 541–555.

    Article  Google Scholar 

  • Schirinzi, T., Graziola, F., Cusmai, R., Fusco, L., Nicita, F., Elia, M., Travaglini, L., Bertini, E., Curatolo, P., Vigevano, F., et al. (2018). ATP1A3-related epileptic encephalopathy responding to ketogenic diet. Brain Dev, 40, 433–438.

    Article  Google Scholar 

  • Scholz, D., Poltl, D., Genewsky, A., Weng, M., Waldmann, T., Schildknecht, S., & Leist, M. (2011). Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. Journal of Neurochemistry, 119, 957–971.

    Article  Google Scholar 

  • Sewell, R. A., & Cozzi, N. V. (1999). More about parkinsonism after taking ecstasy. The New England Journal of Medicine, 341, 1400; author reply 1401.

    Article  Google Scholar 

  • Sun, X., Shih, A. Y., Johannssen, H. C., Erb, H., Li, P., & Murphy, T. H. (2006). Two-photon imaging of glutathione levels in intact brain indicates enhanced redox buffering in developing neurons and cells at the cerebrospinal fluid and blood-brain interface. The Journal of Biological Chemistry, 281, 17420–17431.

    Article  Google Scholar 

  • Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., et al. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives, 119, 866–872.

    Article  Google Scholar 

  • Terron, A., Bal-Price, A., Paini, A., Monnet-Tschudi, F., Bennekou, S. H., Members, E. W. E., Leist, M., & Schildknecht, S. (2018). An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Archives of Toxicology, 92, 41–82.

    Article  Google Scholar 

  • Tokuda, E., Okawa, E., Watanabe, S., & Ono, S. (2014). Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1. Human Molecular Genetics, 23, 1271–1285.

    Article  Google Scholar 

  • Tong, Z. B., Hogberg, H., Kuo, D., Sakamuru, S., Xia, M., Smirnova, L., Hartung, T., & Gerhold, D. (2017). Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening. Journal of Applied Toxicology, 37, 167–180.

    Article  Google Scholar 

  • Tong, Z. B., Huang, R., Wang, Y., Klumpp-Thomas, C. A., Braisted, J. C., Itkin, Z., Shinn, P., Xia, M., Simeonov, A., & Gerhold, D. L. (2018). The toxmatrix: Chemo-genomic profiling identifies interactions that reveal mechanisms of toxicity. Chemical Research in Toxicology, 31, 127–136.

    Article  Google Scholar 

  • Tong, Z. B., Braisted, J., Chu, P. H., & Gerhold, D. (2020). The MT1G gene in LUHMES neurons is a sensitive biomarker of neurotoxicity. Neurotoxicity Research, 38, 967–978.

    Article  Google Scholar 

  • Tysnes, O. B., & Storstein, A. (2017). Epidemiology of Parkinson’s disease. Journal of Neural Transmission (Vienna), 124, 901–905.

    Article  Google Scholar 

  • Weinreb, O., Mandel, S., Youdim, M. B. H., & Amit, T. (2013). Targeting dysregulation of brain iron homeostasis in Parkinson’s disease by iron chelators. Free Radical Biology & Medicine, 62, 52–64.

    Article  Google Scholar 

  • Xiao, Y., Chen, X., Huang, S., Li, G., Mo, M., Zhang, L., Chen, C., Guo, W., Zhou, M., Wu, Z., et al. (2018). Iron promotes alpha-synuclein aggregation and transmission by inhibiting TFEB-mediated autophagosome-lysosome fusion. Journal of Neurochemistry, 145, 34–50.

    Article  Google Scholar 

  • Zhang, P. L., Chen, Y., Zhang, C. H., Wang, Y. X., & Fernandez-Funez, P. (2018). Genetics of Parkinson’s disease and related disorders. Journal of Medical Genetics, 55, 73–80.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences and the National Institute for Environmental and Health Sciences, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gerhold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gerhold, D., Kim, H.H., Tong, ZB. (2022). Biomarkers of Neurotoxicity Inform Mechanisms of Vulnerability and Resilience in Dopaminergic Neurons. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_183

Download citation

Publish with us

Policies and ethics