Skip to main content
Log in

Interferon-β Inhibits Neurotrophin 3 Signalling and Pro-Survival Activity by Upregulating the Expression of Truncated TrkC-T1 Receptor

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although clinically useful for the treatment of various diseases, type I interferons (IFNs) have been implicated as causative factors of a number of neuroinflammatory disorders characterized by neuronal damage and altered CNS functions. As neurotrophin 3 (NT3) plays a critical role in neuroprotection, we examined the effects of IFN-β on the signalling and functional activity of the NT3/TrkC system. We found that prolonged exposure of differentiated human SH-SY5Y neuroblastoma cells to IFN-β impaired the ability of NT3 to induce transphosphorylation of the full-length TrkC receptor (TrkC-FL) and the phosphorylation of downstream signalling molecules, including PLCγ1, Akt, GSK-3β and ERK1/2. NT3 was effective in protecting the cells against apoptosis triggered by serum withdrawal or thapsigargin but not IFN-β. Prolonged exposure to the cytokine had little effects on TrkC-FL levels but markedly enhanced the messenger RNA (mRNA) and protein levels of the truncated isoform TrkC-T1, a dominant-negative receptor that inhibits TrkC-FL activity. Cell depletion of TrkC-T1 by small interfering RNA (siRNA) treatment enhanced NT3 signalling through TrkC-FL and allowed the neurotrophin to counteract IFN-β-induced apoptosis. Furthermore, the upregulation of TrkC-T1 by IFN-β was associated with the inhibition of NT3-induced recruitment of the scaffold protein tamalin to TrkC-T1 and tamalin tyrosine phosphorylation. These data indicate that IFN-β exerts a negative control on NT3 pro-survival signalling through a novel mechanism involving the upregulation of TrkC-T1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Axtell RC, Steinman L (2008) Type I interferons cool the inflamed brain. Immunity 28:600–602

    Article  CAS  PubMed  Google Scholar 

  2. Axtell RC, Raman C, Steinman L (2011) Interferon-β exacerbates Th17-mediated inflammatory disease. Trends Immunol 32:272–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lum M, Croze E, Wagner C, McLenachan S, Mitrovic B, Turnley AM (2009) Inhibition of neurosphere proliferation by IFNγ but not IFNβ is coupled to neuronal differentiation. J Neuroimmunol 206:32–38

    Article  CAS  PubMed  Google Scholar 

  4. Wellen J, Walter J, Jangouk P, Hartung H-P, Dihne M (2009) Neural precursor cells as a novel target for interferon-beta. Neuropharmacology 56:386–398

    Article  CAS  PubMed  Google Scholar 

  5. Ward LA, Massa PT (1995) Neuron-specific regulation of major histocompatibility complex I, interferon-β, and anti-viral state genes. J Neuroimmunol 58:145–155

    Article  CAS  PubMed  Google Scholar 

  6. Delhaye S, Paul S, Blakqori G, Minet M, Weber F, Staeheli P, Michelis T (2006) Neurons produce type I interferon during viral encephalitis. Proc Natl Acad Sci U S A 103:7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crow YJ (2011) Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci 1238:91–98

    Article  CAS  PubMed  Google Scholar 

  8. Hofer MJ, Campbell IL (2013) Type I interferon in neurological disease—the devil from within. Cytokine Growth Factor Rev 24:257–267

    Article  CAS  PubMed  Google Scholar 

  9. Raison CL, Demetrashvili M, Capuron L, Miller A (2005) Neuropsychiatric effects of interferon-α: recognition and management. CNS Drugs 19:105–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell H, Lane T, Carr DJ, Gold LH et al (1999) Structural and functional neuropathology in transgenic mice with expression of IFN-alpha. Brain Res 835:46–61

    Article  CAS  PubMed  Google Scholar 

  11. Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, Berkutzki T, Barnett-Itzhaki Z et al (2014) Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 346:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dedoni S, Olianas MC, Onali P (2010) Interferon-β induces apoptosis in human SH-SY5Y neuroblastoma cells through activation of JAK-STAT signaling and down-regulation of PI3K-Akt pathway. J Neurochem 115:1421–1433

    Article  CAS  PubMed  Google Scholar 

  13. Ping F, Shang J, Zhou J, Zhang H, Zhang L (2012) 5-HT1A receptor and apoptosis contribute to interferon-α-induced “depressive-like” behaviour in mice. Neurosci Lett 514:173–178

    Article  CAS  PubMed  Google Scholar 

  14. Dafny N, Yang PB (2005) Interferon and the central nervous system. Eur J Pharmacol 523:1–15

    Article  CAS  PubMed  Google Scholar 

  15. Huang EJ, Reichardt LF (2001) Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    Article  CAS  PubMed  Google Scholar 

  17. Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19:514–520

    Article  CAS  PubMed  Google Scholar 

  18. Luhder F, Gold R, Flugel A, Linker RA (2013) Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models. Arch Immunol Ther Exp 61:95–105

    Article  Google Scholar 

  19. Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD (2003) Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 23:1424–1431

    CAS  PubMed  Google Scholar 

  20. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  21. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Phil Trans Soc B 361:1545–1564

    Article  CAS  Google Scholar 

  22. Boutros T, Croze E, Yong VW (1997) Interferon-β is a potent promoter of nerve growth factor production by astrocytes. J Neurochem 69:939–946

    Article  CAS  PubMed  Google Scholar 

  23. Biernacki K, Antel JP, Blain M, Narayanan S, Arnold DL, Prat A (2005) Interferon beta promotes nerve growth factor secretion early in the course of multiple sclerosis. Arch Neurol 62:563–568

    Article  PubMed  Google Scholar 

  24. Hamamcioglu K, Reder AT (2007) Interferon-beta regulates cytokines and BDNF: greater effect in relapsing than in progressive multiple sclerosis. Mult Scler 13:459–470

    Article  CAS  PubMed  Google Scholar 

  25. Azoulay D, Mausner-Fainberg K, Urshanski N, Fahoum F, Karni A (2009) Interferon-β therapy up-regulates BDNF secretion from PBMC of MS patients through a CD-dependent mechanism. J Neuroimmunol 211:114–119

    Article  CAS  PubMed  Google Scholar 

  26. Dedoni S, Olianas MC, Ingianni A, Onali P (2012) Type I interferons impair BDNF-induced cell signaling and neurotrophic activity in differentiated human SH-SY5Y neuroblastoma cells and mouse primary cortical neurons. J Neurochem 122:58–71

    Article  CAS  PubMed  Google Scholar 

  27. Dedoni S, Olianas MC, Ingianni A, Onali P (2014) Type I interferons up-regulate the expression and signaling of p75NTR/TkA receptor complex in differentiated human SH-SY5Y neuroblastoma cells. Neuropharmacology 79:321–334

    Article  CAS  PubMed  Google Scholar 

  28. Ramos-Languren LE, Escobar ML (2013) Plasticity and metaplasticity of adult rat hippocampal mossy fibers induced by neurotrophin-3. Eur J Neurosci 37:1248–1259

    Article  CAS  PubMed  Google Scholar 

  29. Arenas E, Persson H (1994) Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Nature 367:368–371

    Article  CAS  PubMed  Google Scholar 

  30. Karavanov A, Sainio K, Saarma M, Saxen L, Sariola H (1995) Neurotrophin 3 rescues neuronal precursors from apoptosis and promotes neuronal differentiation in the embryonic metanephric kidney. Proc Natl Acad Sci U S A 92:11279–11283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Joo W, Hippenmeyer S, Luo L (2014) Dendrite morphogenesis depends on relative levels of NT-3/TrkC signalling. Science 346:626–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sahun I, Gado-Garcia JM, Mador-Arjona A, Giralt A, Alberch J, Dierssen M, Gruart A (2007) Dissociation between CA3-CA1 synaptic plasticity and associative learning in TgNTRK3 transgenic mice. J Neurosci 27:2253–2260

    Article  CAS  PubMed  Google Scholar 

  33. Ammendrup-Johnsen I, Naito Y, Craig AM, Takahashi H (2015) Neurotrophin-3 enhances the synaptic organizing function of TrkC-protein tyrosine phosphatase σ in rat hippocampal neurons. J Neurosci 35:12425–12431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Demel C, Hoegen T, Giese A, Angele B, Pfister H-W, Koedel U, Klein M (2011) Reduced spiral ganglion neuronal loss by adjunctive neurotrophin-3 in experimental pneumococcal meningitis. J Neuroinflammation 8:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shelton DL, Sutherland J, Gripp J, Camerato T, Armanini MP, Phillips HS, Carroll K, Spencer SD et al (1995) Human trks: molecular cloning, tissue distribution, and expression of extracellular domain immunoadhesins. J Neurosci 15:477–491

    CAS  PubMed  Google Scholar 

  36. Palko ME, Coppola V, Tessarollo L (1999) Evidence for a role of truncated trkC receptor isoforms in mouse development. J Neurosci 19:775–782

    CAS  PubMed  Google Scholar 

  37. Eide FF, Vining ER, Eide BL, Zang K, Wang X-Y, Reichardt LF (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Vidaurre OG, Gascon S, Deogracias R, Sobrado M, Cuadrado E, Montaner J, Rodriguez-Pena A, Diaz-Guerra M (2012) Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity. Cell Death Dis 3, e256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Esteban PF, Yoon H-Y, Becker J, Dorsey SG, Caprari P, Palko ME, Coppola V, Saragavi HU et al (2006) A kinase-deficient TrkC receptor isoform activates Arf6-Rac1 signaling through the scaffold protein tamalin. J Cell Biol 173:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaplan DR, Matsumoto K, Lucarelli E, Thiele CJ (1993) Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Neuron 11:321–331

    Article  CAS  PubMed  Google Scholar 

  41. Encinas M, Iglesias M, Llecha N, Comella JX (1999) Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 73:1409–1421

    Article  CAS  PubMed  Google Scholar 

  42. Xie H-R, Hu L-S, Li G-Y (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson’s disease. Chin Med J 123:1086–1092

    CAS  PubMed  Google Scholar 

  43. Olianas MC, Dedoni S, Boi M, Onali P (2008) Activation of nociceptin/orphanin FQ/NOP receptor system inhibits tyrosyne hydroxylase phosphorylation, dopamine synthesis, and dopamine D1 receptor signaling in rat nucleus accumbens and dorsal striatum. J Neurochem 107:544–556

    Article  CAS  PubMed  Google Scholar 

  44. Olianas MC, Dedoni S, Onali P (2011) δ-Opioid receptors stimulate GLUT1-mediated glucose uptake through Src- and IGF-1 receptor-dependent activation of PI3-kinase signalling in CHO cells. Br J Pharmacol 163:624–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guidi M, Gimeno-Muinos M, Kagerbauer B, Marti E, Estivill X, Espinosa-Parrilla Y (2010) Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol 11:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rector-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  47. Liang M-H, Chuang D-M (2007) Regulation and function of glycogen synthase kinase-3 isoforms in neuronal survival. J Biol Chem 282:3904–3917

    Article  CAS  PubMed  Google Scholar 

  48. Kim HK, Kim JW, Zilberstein A, Margolis B, Kim JG, Schlessinger J, Rhee SG (1991) PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell 65:435–441

    Article  CAS  PubMed  Google Scholar 

  49. Lim M-S, Nam S-H, Kim S-J, Kang S-Y, Lee Y-S, Kang K-S (2007) Signaling pathways of the early differentiation of neural stem cells by neurotrophin-3. Biochem. Biophys Res Comm 357:903–909

    Article  CAS  Google Scholar 

  50. Macleod MR, Allsopp TE, McLuckie J, Kelly JS (2001) Serum withdrawal causes apoptosis in SH-SY5Y cells. Brain Res 889:308–315

    Article  CAS  PubMed  Google Scholar 

  51. Nath R, Raser K, Hajimohammadreza I, Wang KKW (1997) Thapsigargin induces apoptosis in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Biochem Mol Biol Int 43:197–205

    CAS  PubMed  Google Scholar 

  52. Dubois C, Vanden Abeele F, Sehgal P, Olesen C, Junker S, Christensen SB, Prevarskaya N, Moller JV (2013) Differential effects of thapsigargin analogues on apoptosis of prostate cancer cells. FEBS J 280:5430–5440

    Article  CAS  PubMed  Google Scholar 

  53. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–274

    Article  CAS  PubMed  Google Scholar 

  54. Menn B, Timsit S, Calothy G, Lamballe F (1998) Differential expression of TrkC catalytic and noncatalytic isoforms suggests that they act independently or in association. J Comp Neurol 401:47–64

    Article  CAS  PubMed  Google Scholar 

  55. Kitano J, Kimura K, Yamazaki Y, Soda T, Shigemoto R, Nakashima Y, Nakanishi S (2002) Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J Neurosci 22:1280–1289

    CAS  PubMed  Google Scholar 

  56. Nevrivy DJ, Peterson VJ, Avram D, Ishmael JE, Hansen SC, Dowell P, Hruby DE, Dawson MI et al (2000) Interaction of GRASP, a protein encoded by a novel retinoic acid-induced gene, with membrane of the cytohesin family of guanine nucleotide exchange factors. J Biol Chem 275:16827–16836

    Article  CAS  PubMed  Google Scholar 

  57. Hirose M, Kitano J, Nakajima Y, Moriyoshi K, Yanagi S, Yamamura H, Muto T, Jingami H et al (2004) Phosphorylation and recruitment of Syk by immunoreceptor tyrosine-based activation motif-based phosphorylation of tamalin. J Biol Chem 279:32308–32315

    Article  CAS  PubMed  Google Scholar 

  58. Fenner BM (2012) Truncated TrkB: beyond a dominant negative receptor. Cytokine Growth Factor Rev 23:15–24

    Article  CAS  PubMed  Google Scholar 

  59. Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426:74–78

    Article  CAS  PubMed  Google Scholar 

  60. Kitano J, Yamazaki Y, Kimura K, Masukado T, Nakajima Y, Nakanishi S (2003) Tamalin is a scaffold protein that interacts with multiple neuronal proteins in distinct modes of protein-protein association. J Biol Chem 278:14762–14768

    Article  CAS  PubMed  Google Scholar 

  61. Jin W, Yun C, Jeong J, Park Y, Lee H-D, Kim S-J (2008) c-Src is required for tropomyosin receptor kinase C (TrkC).induced activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. J Biol Chem 283:1391–1400

    Article  CAS  PubMed  Google Scholar 

  62. Durany N, Michel T, Zochling R, Boissl KW, Cruz-Sanchez FF, Riederer P, Thome J (2001) Brain-derived neurotrophic factor and neurotrophin 3 in schizophrenic psychoses. Schizophr Res 52:79–86

    Article  CAS  PubMed  Google Scholar 

  63. Schramm M, Falkai P, Feldmann N, Knable MB, Bayer TA (1998) Reduced tyrosine kinase receptor C mRNA levels in the frontal cortex of patients with schizophrenia. Neurosci Lett 257:65–68

    Article  CAS  PubMed  Google Scholar 

  64. Weickert CS, Ligons DL, Romanczyk T, Ungaro G, Hyde TM, Herman MM, Weinberger DR, Kleinman JE (2005) Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry 10:637–650

    Article  CAS  PubMed  Google Scholar 

  65. Pae C-U, Marks DM, Han C (2008) Does neurotrophin-3 have a therapeutic implication in major depression. Int J Neurosci 118:1515–1522

    Article  CAS  PubMed  Google Scholar 

  66. Hayasaka S, Nagaki Y, Matsumoto M, Sato S (1999) Interferon associated retinopathy. Br J Ophthalmol 82:323–325

    Article  Google Scholar 

  67. Raza A, Mittal S, Sood GK (2013) Interferon-associated retinopathy during the treatment of chronic hepatitis C: a systematic review. J Viral Hepat 20:593–599

    Article  CAS  PubMed  Google Scholar 

  68. Rudzinski M, Wong TP, Saragovi HU (2004) Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J Neurobiol 58:341–354

    Article  CAS  PubMed  Google Scholar 

  69. Bai Y, Shi Z, Zhuo Y, Liu J, Malakhov A, Ko E, Burgess K, Schaefer H et al (2010) In glaucoma the upregulated truncated TrkC.T1 receptor isoform in glia causes increased TNF-α production, leading to retinal ganglion cell death. Invest Ophthalmol Vis Sci 51:6639–6651

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Regione Autonoma della Sardegna, Italy. L.R. n.7/2007-CRP 10810/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Onali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedoni, S., Olianas, M.C., Ingianni, A. et al. Interferon-β Inhibits Neurotrophin 3 Signalling and Pro-Survival Activity by Upregulating the Expression of Truncated TrkC-T1 Receptor. Mol Neurobiol 54, 1825–1843 (2017). https://doi.org/10.1007/s12035-016-9789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9789-2

Keywords

Navigation