Skip to main content

Advertisement

Log in

Combining Normobaric Oxygen with Ethanol or Hypothermia Prevents Brain Damage from Thromboembolic Stroke via PKC-Akt-NOX Modulation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In a thromboembolic stroke model after reperfusion by recombinant tissue plasminogen activator (rt-PA), we aimed to determine whether therapeutic hypothermia (TH) and ethanol (EtOH) in combination with low concentration (60 %) of normobaric oxygen (NBO) enhanced neuroprotection, as compared to using each of these agents alone. We further aimed to elucidate a potential role of the NADPH oxidase (NOX), phosphorylated protein kinase B (Akt), and protein kinase C-δ (PKC-δ) pathway in oxidative stress and neuroprotection. In Sprague–Dawley rats, a focal middle cerebral artery (MCA) occlusion was induced by an autologous embolus in the following experimental groups: rt-PA treatment alone, rt-PA + NBO treatment, rt-PA + TH at 33 °C, rt-PA + EtOH, rt-PA + NBO + EtOH, rt-PA + NBO + TH, rt-PA + NOX inhibitor, rt-PA + EtOH + NOX inhibitor, or rt-PA + EtOH + Akt inhibitor. Control groups included sham-operated without stroke or stroke without treatment. Infarct volume and neurological deficit were assessed at 24 h after rt-PA-induced reperfusion with or without treatments. ROS levels, NOX activity, and the protein expression of NOX subunits p22phox, p47phox, p67phox, gp91phox, as well as PKC-δ and phosphorylated Akt were measured at 3 and 24 h after rt-PA-induced reperfusion. Following rt-PA in thromboembolic stroke rats, NBO combined with TH or EtOH more effectively decreased infarct volume and neurological deficit, as well as reactive oxygen species (ROS) production than with any of the used monotherapies. NOX activity and subunit expressions were downregulated and temporally associated with reduced PKC-δ and increased p-Akt expression. The present study demonstrated that combining NBO with either TH or EtOH conferred similar neuroprotection via modulation of NOX activation. The results suggest a role of Akt in NOX activation and implicate an upstream PKC-δ pathway in the Akt regulation of NOX. It is possible to substitute EtOH for TH, thus circumventing the difficulties in clinical application of TH through the comparatively easier usage of EtOH as a potential stroke management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx 1(1):36–45

    Article  PubMed  PubMed Central  Google Scholar 

  2. Minnerup J, Sutherland BA, Buchan AM, Kleinschnitz C (2012) Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 13(9):11753–11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55(3):363–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saver JL (2004) Number needed to treat estimates incorporating effects over the entire range of clinical outcomes - Novel derivation method and application to thrombolytic therapy for acute stroke. Arch Neurol 61(7):1066–1070. doi:10.1001/archneur.61.7.1066

    Article  PubMed  Google Scholar 

  5. Kollmar R, Schwab S (2012) Hypothermia and ischemic stroke. Curr Treat Options Neurol. doi:10.1007/s11940-012-0164-y

    PubMed  Google Scholar 

  6. Bitterman H (2009) Bench-to-bedside review: oxygen as a drug. Crit Care 13(1):205

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cornet AD, Kooter AJ, Peters MJ, Smulders YM (2013) The potential harm of oxygen therapy in medical emergencies. Crit Care 17(2):313

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bennett MH, Weibel S, Wasiak J, Schnabel A, French C, Kranke P (2015) Hyperbaric oxygen therapy for acute ischemic stroke. Stroke 46(5):e109–e110

    Article  Google Scholar 

  9. Cornet AD, Kooter AJ, Peters MJ, Smulders YM (2012) Supplemental oxygen therapy in medical emergencies: more harm than benefit? Arch Intern Med 172(3):289–290

    Article  PubMed  Google Scholar 

  10. Pountain SJ, Roffe C (2012) Does routine oxygen supplementation in patients with acute stroke improve outcome? BMJ 345:e6976

    Article  CAS  PubMed  Google Scholar 

  11. Padma M, Bhasin A, Bhatia R, Garg A, Singh M, Tripathi M, Prasad K (2010) Normobaric oxygen therapy in acute ischemic stroke: a pilot study in Indian patients. Ann Indian Acad Neurol 13(4):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rønning OM, Guldvog B (1999) Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. Stroke 30(10):2033–2037

    Article  PubMed  Google Scholar 

  13. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346(8):557–563

    Article  PubMed  Google Scholar 

  14. Nikolov NM, Cunningham AJ (2003) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. Surv Anesthesiol 47(4):219–220

    Article  Google Scholar 

  15. Choi K-E, Hall CL, Sun J-M, Wei L, Mohamad O, Dix TA, Shan PY (2012) A novel stroke therapy of pharmacologically induced hypothermia after focal cerebral ischemia in mice. FASEB J 26(7):2799–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Colbourne F, Li H, Buchan AM (1999) Indefatigable CA1 sector neuroprotection with mild hypothermia induced 6 hours after severe forebrain ischemia in rats. J Cereb Blood Flow Metab 19(7):742–749

    Article  CAS  PubMed  Google Scholar 

  17. Karibe H, Chen J, Zarow GJ, Graham SH, Weinstein PR (1994) Delayed induction of mild hypothermia to reduce infarct volume after temporary middle cerebral artery occlusion in rats. J Neurosurg 80(1):112–119

    Article  CAS  PubMed  Google Scholar 

  18. Maier CM, Sun GH, Kunis D, Yenari MA, Steinberg GK (2001) Delayed induction and long-term effects of mild hypothermia in a focal model of transient cerebral ischemia: neurological outcome and infarct size. J Neurosurg 94(1):90–96

    Article  CAS  PubMed  Google Scholar 

  19. Han Z, Liu X, Luo Y, Ji X (2015) Therapeutic hypothermia for stroke: where to go? Exp Neurol 272:67–77

    Article  PubMed  Google Scholar 

  20. Wang F, Wang Y, Geng X, Asmaro K, Peng C, Sullivan JM, Ding JY, Ji X et al (2012) Neuroprotective effect of acute ethanol administration in a rat with transient cerebral ischemia. Stroke 43(1):205–210. doi:10.1161/STROKEAHA.111.629576

    Article  CAS  PubMed  Google Scholar 

  21. Fu P, Peng C, Ding JY, Asmaro K, Sullivan JM, Guthikonda M, Ding Y (2013) Acute administration of ethanol reduces apoptosis following ischemic stroke in rats. Neurosci Res 76(1-2):93–97. doi:10.1016/j.neures.2013.02.011

    Article  CAS  PubMed  Google Scholar 

  22. Kochanski R, Peng C, Higashida T, Geng X, Hüttemann M, Guthikonda M, Ding Y (2013) Neuroprotection conferred by post‐ischemia ethanol therapy in experimental stroke: an inhibitory effect on hyperglycolysis and NADPH oxidase activation. J Neurochem 126(1):113–121

    Article  CAS  PubMed  Google Scholar 

  23. Geng X, Fu P, Ji X, Peng C, Fredrickson V, Sy C, Meng R, Ling F et al (2013) Synergetic neuroprotection of normobaric oxygenation and ethanol in ischemic stroke through improved oxidative mechanism. Stroke 44(5):1418–1425. doi:10.1161/STROKEAHA.111.000315

    Article  CAS  PubMed  Google Scholar 

  24. Parmar S, Moore-Langston S, Fredrickson V, Kim JM, Rastogi R, Elmadoun O, Ding Y (2015) Neuroprotective mechanisms of oxygen and ethanol: a potential combination therapy in stroke. Curr Med Chem 22(10):1194–1204

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Zhang RL, Jiang Q, Ding G, Chopp M, Zhang ZG (2015) Focal embolic cerebral ischemia in the rat. Nat Protoc 10(4):539–547. doi:10.1038/nprot.2015.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang XN, Cairns B, Kim JY, Yenari MA (2012) NADPH oxidase in stroke and cerebrovascular disease. Neurol Res 34(4):338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, Swanson RA (2008) Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 64(6):654–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hafeez A, Elmadhoun O, Peng C, Ding JY, Geng X, Guthikonda M, Ding Y (2014) Reduced apoptosis by ethanol and its association with PKC-δ and Akt signaling in ischemic stroke. Aging Dis 5(6):366

    PubMed  PubMed Central  Google Scholar 

  30. Brodie C, Blumberg P (2003) Regulation of cell apoptosis by protein kinase c δ. Apoptosis 8(1):19–27

    Article  CAS  PubMed  Google Scholar 

  31. Aronowski J, Strong R, Shirzadi A, Grotta JC (2003) Ethanol plus caffeine (Caffeinol) for treatment of ischemic stroke preclinical experience. Stroke 34(5):1246–1251

    Article  CAS  PubMed  Google Scholar 

  32. Kollmar R, Henninger N, Bardutzky J, Schellinger PD, Schäbitz W-R, Schwab S (2004) Combination therapy of moderate hypothermia and thrombolysis in experimental thromboembolic stroke—an MRI study. Exp Neurol 190(1):204–212

    Article  CAS  PubMed  Google Scholar 

  33. Qi ZF, Luo YM, Liu XR, Wang RL, Zhao HP, Yan F, Song ZJ, Luo M et al (2012) AKT/GSK3β-Dependent autophagy contributes to the neuroprotection of limb remote ischemic postconditioning in the transient cerebral ischemic rat model. CNS Neurosci Ther 18(12):965–973. doi:10.1111/cns.12016

    Article  CAS  PubMed  Google Scholar 

  34. Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK, Zhao H (2008) The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem 105(3):943–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma M, Chuang WW, Sun Z (2002) Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3β inhibition and nuclear β-catenin accumulation. J Biol Chem 277(34):30935–30941

    Article  CAS  PubMed  Google Scholar 

  36. Tang XN, Cairns B, Cairns N, Yenari MA (2008) Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 154(2):556–562. doi:10.1016/j.neuroscience.2008.03.090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17(3):472–476

    Article  CAS  PubMed  Google Scholar 

  38. Geng X, Elmadhoun O, Peng C, Ji X, Hafeez A, Liu Z, Du H, Rafols JA et al (2015) Ethanol and normobaric oxygen novel approach in modulating pyruvate dehydrogenase complex after severe transient and permanent ischemic stroke. Stroke 46(2):492–499

    Article  CAS  PubMed  Google Scholar 

  39. Taylor JM, Crack PJ (2004) Impact of oxidative stress on neuronal survival. Clin Exp Pharmacol Physiol 31(7):397–406

    Article  CAS  PubMed  Google Scholar 

  40. Ozkul A, Akyol A, Yenisey C, Arpaci E, Kiylioglu N, Tataroglu C (2007) Oxidative stress in acute ischemic stroke. J Clin Neurosci 14(11):1062–1066

    Article  CAS  PubMed  Google Scholar 

  41. Pradeep H, Diya JB, Shashikumar S, Rajanikant GK (2012) Review paper oxidative stress–assassin behind the ischemic stroke. Folia Neuropathol 50(3):219–230

    Article  CAS  PubMed  Google Scholar 

  42. Sjöberg F, Singer M (2013) The medical use of oxygen: a time for critical reappraisal. J Int Med 274(6):505–528

    Article  Google Scholar 

  43. Chen F, Qi Z, Luo Y, Hinchliffe T, Ding G, Xia Y, Ji X (2014) Non-pharmaceutical therapies for stroke: mechanisms and clinical implications. Prog Neurobiol 115:246–269. doi:10.1016/j.pneurobio.2013.12.007

    Article  PubMed  Google Scholar 

  44. Moore M, Cunningham AJ (2003) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. Surv Anesthesiol 47(4):220–221

    Article  Google Scholar 

  45. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK et al (2005) Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N Engl J Med 353(15):1574–1584

    Article  CAS  PubMed  Google Scholar 

  46. Horiguchi T, Shimizu K, Ogino M, Suga S, Inamasu J, Kawase T (2003) Postischemic hypothermia inhibits the generation of hydroxyl radical following transient forebrain ischemia in rats. J Neurotrauma 20(5):511–520

    Article  PubMed  Google Scholar 

  47. Maier CM, Sun GH, Cheng D, Yenari MA, Chan PH, Steinberg GK (2002) Effects of mild hypothermia on superoxide anion production, superoxide dismutase expression, and activity following transient focal cerebral ischemia. Neurobiol Dis 11(1):28–42

    Article  CAS  PubMed  Google Scholar 

  48. Lei B, Adachi N, Arai T (1997) The effect of hypothermia on H 2 O 2 production during ischemia and reperfusion: a microdialysis study in the gerbil hippocampus. Neurosci Lett 222(2):91–94

    Article  CAS  PubMed  Google Scholar 

  49. Lee SM, Zhao H, Maier CM, Steinberg GK (2009) The protective effect of early hypothermia on PTEN phosphorylation correlates with free radical inhibition in rat stroke. J Cereb Blood Flow Metab 29(9):1589–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Slessarev M, Somogyi R, Preiss D, Vesely A, Sasano H, Fisher JA (2006) Efficiency of oxygen administration: sequential gas delivery versus “flow into a cone” methods. Crit Care Med 34(3):829–834

    Article  CAS  PubMed  Google Scholar 

  51. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27(5):1129–1138

    Article  CAS  PubMed  Google Scholar 

  52. Loukogeorgakis SP, van den Berg MJ, Sofat R, Nitsch D, Charakida M, de Groot E, MacAllister RJ, Kuijpers TW et al (2010) Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans. Circulation 121(21):2310–2316

    Article  CAS  PubMed  Google Scholar 

  53. Babior BM (2004) NADPH oxidase. Curr Opin Immunol 16(1):42–47

    Article  CAS  PubMed  Google Scholar 

  54. Babior BM (1999) NADPH oxidase: an update. Blood 93(5):1464–1476

    CAS  PubMed  Google Scholar 

  55. Brandes RP, Weissmann N, Schröder K (2014) Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med 76:208–226

    Article  CAS  PubMed  Google Scholar 

  56. Zhao H, Shimohata T, Wang JQ, Sun G, Schaal DW, Sapolsky RM, Steinberg GK (2005) Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J Neurosci 25(42):9794–9806

    Article  CAS  PubMed  Google Scholar 

  57. Zheng W-H, Kar S, Dore S, Quirion R (2000) Insulin-like growth factor-1 (IGF-1): a neuroprotective trophic factor acting via the Akt kinase pathway. In: Advances in Research on Neurodegeneration. Springer, 261-272.

  58. Xu X, Chua CC, Gao J, Chua K-W, Wang H, Hamdy RC, Chua BH (2008) Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res 1227:12–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 22(15):6401–6407

    CAS  PubMed  Google Scholar 

  60. Basuroy S, Tcheranova D, Bhattacharya S, Leffler CW, Parfenova H (2011) Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis. Am J Physiol Cell Physiol 300(2):C256–C265

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Ren J (2011) Thapsigargin triggers cardiac contractile dysfunction via NADPH oxidase-mediated mitochondrial dysfunction: role of Akt dephosphorylation. Free Radic Biol Med 51(12):2172–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chou W-H, Messing RO (2005) Protein kinase C isozymes in stroke. Trends Cardiovasc Med 15(2):47–51

    Article  CAS  PubMed  Google Scholar 

  63. Zhao M, Xia L, Chen G-Q (2012) Protein kinase cδ in apoptosis: a brief overview. Arch Immunol Ther Exp 60(5):361–372

    Article  CAS  Google Scholar 

  64. Bright R, Raval AP, Dembner JM, Pérez-Pinzón MA, Steinberg GK, Yenari MA, Mochly-Rosen D (2004) Protein kinase C δ mediates cerebral reperfusion injury in vivo. J Neurosci 24(31):6880–6888

    Article  CAS  PubMed  Google Scholar 

  65. Bey EA, Xu B, Bhattacharjee A, Oldfield CM, Zhao X, Li Q, Subbulakshmi V, Feldman GM et al (2004) Protein kinase Cδ is required for p47phox phosphorylation and translocation in activated human monocytes. J Immunol 173(9):5730–5738

    Article  CAS  PubMed  Google Scholar 

  66. Wen HC, Huang WC, Ali A, Woodgett JR, Lin WW (2003) Negative regulation of phosphatidylinositol 3-kinase and Akt signalling pathway by PKC. Cell Signal 15(1):37–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Wayne State University Neurosurgery Fund, American Heart Association Grant-in-Aid (14GRNT20460246), and National Nature Science Foundation of China (no. 81501141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xunming Ji or Yuchuan Ding.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Stevenson, J., Geng, X. et al. Combining Normobaric Oxygen with Ethanol or Hypothermia Prevents Brain Damage from Thromboembolic Stroke via PKC-Akt-NOX Modulation. Mol Neurobiol 54, 1263–1277 (2017). https://doi.org/10.1007/s12035-016-9695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9695-7

Keywords

Navigation