Skip to main content

Advertisement

Log in

Low Levels of Prohibitin in Substantia Nigra Makes Dopaminergic Neurons Vulnerable in Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Since substantia nigra (SN) and ventral tegmental area (VTA) dopaminergic neurons are, respectively, susceptible or largely unaffected in Parkinson’s disease (PD), we searched for protein(s) that regulates this differential sensitivity. Differentially, expressed proteins in SN and VTA were investigated employing two-directional gel electrophoresis- matrix-assisted laser desorption ionization time of flight (MALDI-TOF-TOF) analyses. Prohibitin, which is involved in mitochondrial integrity, was validated using immunoblot, qRT-PCR, and immunohistochemistry in normal mice as well as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-model, PD postmortem human brains, and PD cybrids. In prohibitin over-expression, differentiated SH-SY5Y neurons were investigated for their susceptibility to PD neurotoxin, 1-methyl-4-phenyl-pyridnium (MPP+). Prohibitin, Hsc73, and Cu-Zn superoxide dismutase (Cu-Zn SOD) were highly expressed in VTA, whereas heat shock protein A8 (HSPA8) and 14-3-3ζ/δ were 2-fold more in SN. Prohibitin level was transiently increased in SN but unaltered in VTA on the third day of MPTP-induced mice, whereas in PD human brains, prohibitin was depleted in both these regions. Parallel to mouse SN, an enhanced prohibitin expression was found in human PD cybrids. In MPP+-induced cellular model of PD, reduction in prohibitin level was found to be associated with a loss in its binding with Ndufs3, a mitochondrial complex I protein partner. Prohibitin over-expression resisted MPP+-induced neuronal death by restoring mitochondrial membrane potential, preventing reactive oxygen species generation and cytochrome c release into cytosol. These protective phenomena exerted by prohibitin over-expression altogether hinder caspase 3 activation induced by MPP+. These results imply that prohibitin is an important negotiator protein that regulates dopaminergic cell death in SN and their protection in VTA in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    Article  CAS  PubMed  Google Scholar 

  3. Wooten GF, Currie LJ, Bovbjerg VE, Lee JK, Patrie J (2004) Are men at greater risk for Parkinson’s disease than women? J Neurol Neurosurg Psychiatry 75:637–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taylor KS, Cook JA, Counsell CE (2007) Heterogeneity in male to female risk for Parkinson’s disease. J Neurol Neurosurg Psychiatry 78:905–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    Article  CAS  PubMed  Google Scholar 

  6. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448

    Article  PubMed  Google Scholar 

  7. Phani S, Gonye G, Iacovitti L (2010) VTA neurons show a potentially protective transcriptional response to MPTP. Brain Res 1343:1–13

    Article  CAS  PubMed  Google Scholar 

  8. Terzioglu M, Galter D (2008) Parkinson’s disease: genetic versus toxin-induced rodent models. FEBS J 275:1384–1391

    Article  CAS  PubMed  Google Scholar 

  9. Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

    Article  CAS  PubMed  Google Scholar 

  10. Hirsch EC (2006) How to judge animal models of Parkinson’s disease in terms of neuroprotection. J Neural Transm Suppl 70:255–260

    Article  CAS  Google Scholar 

  11. Lv Z, Jiang H, Xu H, Song N, Xie J (2011) Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in Parkinson’s disease. J Neural Transm 118:361–369

    Article  CAS  PubMed  Google Scholar 

  12. Chung CY, Koprich JB, Endo S, Isacson O (2007) An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson’s disease. J Neurosci 27:8314–8323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chung CY, Koprich JB, Hallett PJ, Isacson O (2009) Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression. Proc Natl Acad Sci U S A 52:22474–22479

    Article  Google Scholar 

  14. Di Salvio M, Di Giovannantonio LG, Acampora D, Prosperi R, Omodei D, Prakash N, Wurst W, Simeone A (2010) Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat Neurosci 13:1481–1488

    Article  CAS  PubMed  Google Scholar 

  15. Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122

    Article  CAS  PubMed  Google Scholar 

  16. Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K et al (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dawson TM, Dawson VL (2002) Neuroprotective and neurorestorative strategies for Parkinson’s disease. Nat Neurosci 5:1058–1061

    Article  CAS  PubMed  Google Scholar 

  18. Hunot S, Hirsch EC (2003) Neuroinflammatory processes in Parkinson’s disease. Ann Neurol 53:S49–S58

    Article  CAS  PubMed  Google Scholar 

  19. Bueler H (2009) Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson’s disease. Exp Neurol 218:235–246

    Article  PubMed  Google Scholar 

  20. Grimm J, Mueller A, Hefti F, Rosenthal A (2004) Molecular basis for catecholaminergic neuron diversity. Proc Natl Acad Sci U S A 101:13891–13896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chandra G, Rangasamy SB, Roy A, Kordower JH, Pahan K (2016) Neutralization of RANTES and eotaxin prevents the loss of dopaminergic neurons in a mouse model of Parkinson disease. J Biol Chem 291:15267–15281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muñoz-Manchado AB, Villadiego J, Romo-Madero S, Suárez-Luna N, Bermejo-Navas A, Rodríguez-Gómez JA, Garrido-Gil P, Labandeira-García JL et al (2016) Chronic and progressive Parkinson’s disease MPTP model in adult and aged mice. J Neurochem 136:373–387

    Article  PubMed  Google Scholar 

  23. Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. J Pineal Res 58:262–274

    Article  CAS  PubMed  Google Scholar 

  24. Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics pii: 239204

  25. Greene JG (2006) Gene expression profiles of brain dopamine neurons and relevance to neuropsychiatric disease. J Physiol 575:411–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hung HC, Lee EH (1998) MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic Biol Med 24:76–84

    Article  CAS  PubMed  Google Scholar 

  27. Slone SR, Lesort M, Yacoubian TA (2011) 14-3-3Theta protects against neurotoxicity in a cellular Parkinson’s disease model through inhibition of the apoptotic factor Bax. PLoS One 6:e21720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Lou H, Pedersen CJ, Smith AD, Perez RG (2009) 14-3-3Zeta contributes to tyrosine hydroxylase activity in MN9D cells: localization of dopamine regulatory proteins to mitochondria. J Biol Chem 284:14011–14019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1464–1472

    Article  PubMed  Google Scholar 

  30. Pemberton S, Melki R (2012) The interaction of Hsc70 protein with fibrillar alpha-synuclein and its therapeutic potential in Parkinson’s disease. Commun Integr Biol 5:94–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pemberton S, Madiona K, Pieri L, Kabani M, Bousset L, Melki R (2011) Hsc70 protein interaction with soluble and fibrillar alpha-synuclein. J Biol Chem 286:34690–34699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a drosophila model for Parkinson’s disease. Science 295:865–868

    Article  CAS  PubMed  Google Scholar 

  33. Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in drosophila. J Biol Chem 280:2873–2878

    Article  CAS  PubMed  Google Scholar 

  34. Zhou P, Qian L, D’Aurelio M, Cho S, Wang G, Manfredi G, Pickel V, Iadecola C (2012) Prohibitin reduces mitochondrial free radical production and protects brain cells from different injury modalities. J Neurosci 32:583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sripathi SR, He W, Atkinson CL, Smith JJ, Liu Z, Elledge BM, Jahng WJ (2011) Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry 50:8342–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tatsuta T, Model K, Langer T (2005) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borland MK, Mohanakumar KP, Rubinstein JD, Keeney PM, Xie J, Capaldi R, Dunham LD, Trimmer PA et al (2009) Relationships among molecular genetic and respiratory properties of Parkinson’s disease cybrid cells show similarities to Parkinson’s brain tissues. Biochim Biophys Acta 1792:68–74

    Article  CAS  PubMed  Google Scholar 

  38. Varghese M, Pandey M, Samanta A, Gangopadhyay PK, Mohanakumar KP (2009) Reduced NADH coenzyme Q dehydrogenase activity in platelets of Parkinson’s disease, but not Parkinson plus patients, from an Indian population. J Neurol Sci 279:39–42

    Article  CAS  PubMed  Google Scholar 

  39. Park B, Yang J, Yun N, Choe KM, Jin BK, Oh YJ (2010) Proteomic analysis of expression and protein interactions in a 6-hydroxydopamine-induced rat brain lesion model. Neurochem Int 57:16–32

    Article  CAS  PubMed  Google Scholar 

  40. Pacelli C, Giguère N, Bourque MJ, Lévesque M, Slack RS, Trudeau LÉ (2015) Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol 25:2349–2360

    Article  CAS  PubMed  Google Scholar 

  41. Greene JG, Dingledine R, Greenamyre JT (2010) Neuron-selective changes in RNA transcripts related to energy metabolism in toxic models of parkinsonism in rodents. Neurobiol Dis 38:476–481

  42. Ferrer I, Perez E, Dalfo E, Barrachina M (2007) Abnormal levels of prohibitin and ATP synthase in the substantia nigra and frontal cortex in Parkinson’s disease. Neurosci Lett 415:205–209

    Article  CAS  PubMed  Google Scholar 

  43. Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B (2003) 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J 371:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW, Muijsers AO, van der Spek H et al (2000) Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parsons RB, Aravindan S, Kadampeswaran A, Evans EA, Sandhu KK, Levy ER, Thomas MG, Austen BM et al (2011) The expression of nicotinamide N-methyltransferase increases ATP synthesis and protects SH-SY5Y neuroblastoma cells against the toxicity of complex I inhibitors. Biochem J 436:145–155

    Article  CAS  PubMed  Google Scholar 

  46. Li L, Guo JD, Wang HD, Shi YM, Yuan YL, Hou SX (2015) Prohibitin 1 gene delivery promotes functional recovery in rats with spinal cord injury. Neuroscience 286:27–36

    Article  CAS  PubMed  Google Scholar 

  47. Chowdhury I, Branch A, Olatinwo M, Thomas K, Matthews R, Thompson WE (2011) Prohibitin (PHB) acts as a potent survival factor against ceramide induced apoptosis in rat granulosa cells. Life Sci 89:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muraguchi T, Kawawa A, Kubota S (2010) Prohibitin protects against hypoxia-induced H9c2 cardiomyocyte cell death. Biomed Res 31:113–122

    Article  CAS  PubMed  Google Scholar 

  49. Muralikrishnan D, Mohanakumar KP (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 12:905–912

    Article  CAS  PubMed  Google Scholar 

  50. Manova ES, Habib CA, Boikov AS, Ayaz M, Khan A, Kirsch WM, Kido DK, Haacke EM (2009) Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 30:569–574

    Article  CAS  PubMed  Google Scholar 

  51. Appukuttan TA, Ali N, Varghese M, Singh A, Tripathy D, Padmakumar M, Gangopadhyay PK, Mohanakumar KP (2013) Parkinson’s disease cybrids, differentiated or undifferentiated, maintain morphological and biochemical phenotypes different from those of control cybrids. J Neurosci Res 91:963–970

    Article  CAS  PubMed  Google Scholar 

  52. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  53. Lessner G, Schmitt O, Haas SJ, Mikkat S, Kreutzer M, Wree A, Glocker MO (2010) Differential proteome of the striatum from hemiparkinsonian rats displays vivid structural remodeling processes. J Proteome Res 9:4671–4687

    Article  CAS  PubMed  Google Scholar 

  54. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  55. Boukli NM, Shetty V, Cubano L, Ricaurte M, Coelho-Dos-Reis J, Nickens Z, Shah P, Talal AH et al (2012) Unique and differential protein signatures within the mononuclear cells of HIV-1 and HCV mono-infected and co-infected patients. Clin Proteomics 9:11

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bourges I, Ramus C, Mousson de Camaret B, Beugnot R, Remacle C, Cardol P, Hofhaus G, Issartel JP (2004) Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin. Biochem J 383:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  58. Chakraborty J, Singh R, Dutta D, Naskar A, Rajamma U, Mohanakumar KP (2014) Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s disease. CNS Neurosci Ther 20:10–19

    Article  CAS  PubMed  Google Scholar 

  59. Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK (2012) Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci 32:3306–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kathiria AS, Butcher LD, Feagins LA, Souza RF, Boland CR, Theiss AL (2012) Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One 7:e31231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luo J, Deng Z, Luo X, Tang N, Song W, Chen J, Sharff KA, Luu HH et al (2007) A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc 2:1236–1247

    Article  CAS  PubMed  Google Scholar 

  62. Mittereder N, March KL, Trapnell BC (1996) Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 70:7498–7509

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sanphui P, Biswas SC (2013) FoxO3a is activated and executes neuron death via Bim in response to beta-amyloid. Cell Death Dis 4:e625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gerencser AA, Chinopoulos C, Birket MJ, Jastroch M, Vitelli C, Nicholls DG, Brand MD (2012) Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J Physiol 590:2845–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Verburg J, Hollenbeck PJ (2008) Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 28:8306–8315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jeon BS, Kholodilov NG, Oo TF, Kim SY, Tomaselli KJ, Srinivasan A, Stefanis L, Burke RE (1999) Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra. J Neurochem 73:322–333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.D., N.A., R.S., and P.R.K. are research fellows of the Council of Scientific and Industrial Research (CSIR), Govt. of India. E.B. and A.N. received fellowships from Department of Biotechnology, Govt. of India. The study was initiated as a major laboratory program (MLP) of CSIR-IICB and later on financed by the network project of the 12th Five-Year Plan of CSIR, “Neurodegenerative Diseases: Causes and Corrections” (miND: BSC 0115). Continuation of the program was funded by Department of Higher Education, Government of Kerala, through Mahatma Gandhi University, Kottayam. We thank Prof. S.K. Shankar, M.D. and Dr. Anita Mahadevan, M.D., the principal and associate coordinators, respectively, of Human Brain Bank at NIMHANS, Bangalore for the midbrain postmortem human brain samples. We also thank Dr. Arianne L. Theiss, Baylor Research Institute, TX, USA for providing pEGFPN1-PHB vector construct. A special thanks to Mr. Sandip Chakraborty and Mr. Diptadeep Sarkar are due for their technical support in MALDI-TOF-TOF analysis and confocal microscopy, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kochupurackal P Mohanakumar.

Ethics declarations

The experimental protocol met the National Guidelines (CPCSEA, Ministry of Environment, Forests and Climate Changes, Govt. of India) on the Proper Care and Use of Animals in Laboratory Research and was approved by the Animal Ethics Committee of the Institute.

The study protocol was approved by the institutional Human Ethics Committee strictly following the guidelines of Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig. 1

Categorization of proteins identified from 2-DE gel using iProclass database of Protein Information Resource (PIR, www.pir.georgetown.edu) gene ontology database according to Cellular component, Molecular function and Biological process. In each pie chart the total number of proteins present in each category is given in parenthesis. (GIF 63 kb)

High resolution image (TIFF 5220 kb)

Supplementary Fig. 2

Protein interactome analysis using String; v 9.0 showed PHB to interact with several mitochondrial complex I subunits, some of which showed direct interactions are Ndufs3, Ndufv2, and Ndufv1. The interactions were based on neighborhood, gene fusion, text-mining, co-occurrence, co-expression and database, and was with a with high confidence level of 0.7. (GIF 17 kb)

High resolution image (TIFF 1568 kb)

Supplementary Fig. 3

Immunostaining by Alexa Fluor 488 tagged secondary antibodies (green color) against tyrosine hydroxylase (TH) present inside the dopamine (DA) neurons of substantia nigra pars compacta (SN) and ventral tegmental area (VTA) of different groups of mice (control, MPTP 3d – animals analyzed after 3 days of last MPTP injection, and MPTP 7d - animals analyzed after 7 days of last MPTP injection). SN and VTA are marked in the control image. Scale bar 100 μm. (GIF 11 kb)

High resolution image (TIFF 761 kb)

Supplementary Fig. 4

(A) Human embryonic kidney-293T (HEK-293T) cells were transduced with adenoviruses coding human PHB gene tagged with emerald GFP and kept for 24 h. Fluorescent images show enhanced level of PHB-GFP expression with increasing volume of adenovirus stock volume given to the cells (10, 20 and 40 μl). Scale bar was 200 μm. (B) Immunoblot shows enhanced level of PHB-GFP (60 KD) along with indigenous PHB (32 KD) in virus-treated and non-treated cells (NT). PHB-GFP is absent in NT sample. β-actin was used as the loading control (44 KD). (GIF 11 kb)

High resolution image (TIFF 1031 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D., Ali, N., Banerjee, E. et al. Low Levels of Prohibitin in Substantia Nigra Makes Dopaminergic Neurons Vulnerable in Parkinson’s Disease. Mol Neurobiol 55, 804–821 (2018). https://doi.org/10.1007/s12035-016-0328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0328-y

Keywords

Navigation