Skip to main content
Log in

Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in Parkinson’s disease

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

The staging of Lewy-related pathology in sporadic Parkinson’s disease (PD) reveals that many brain nuclei are affected in PD during different stages, except the ventral tegmental area (VTA), which is close related to the substantia nigra (SN) and enriched in dopamine (DA) neurons. Why DA neurons are selectively degenerated in the SN of PD is far from known. In the present study, we observed that the number of tyrosine hydroxylase immunoreactive neurons decreased and iron-staining positive cells increased in the SN, but not in the VTA, in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated PD mice. Increased expression of divalent metal transporter 1 and decreased expression of ferroportin 1 might associate with this increased nigral iron levels. Lipofuscin granular aggregations and upregulation of alpha-synuclein (α-synuclein) were also observed only in the SN. These results suggest that increased iron levels associate with the selective degeneration of DA neurons in the SN. The intracellular regulation mechanisms for the iron transporters may be different in the SN and VTA under the same conditions. Moreover, the lipofuscin granular aggregations and upregulation of α-synuclein were also involved in the selective degeneration of dopaminergic neurons in the SN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bartzokis G, Cummings JL, Markham CH, Marmarelis PZ, Treciokas TA, Tishler TA, Marder SR, Mintz J (1999) MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magn Reson Imaging 17:213–222

    Article  PubMed  CAS  Google Scholar 

  • Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    PubMed  CAS  Google Scholar 

  • Berg D, Siefker C, Ruprecht-Dörfler P, Becker G (2001) Echo pattern of substantia nigra and its relevance for motor function and motility in elderly subjects. Neurology 56:13–17

    PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K (2008) Invited Article: nervous system pathology in sporadic Parkinson disease. Neurology 70:1916–1925

    Article  PubMed  Google Scholar 

  • Braak E, Sandmann-Keil D, Rub U et al (2001) Alpha-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol 101:195–201

    PubMed  CAS  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  • Cole NB, Murphy DD, Lebowitz J, Di Noto L, Levine RL, Nussbaum RL (2005) Metal-catalyzed oxidation of alpha-synuclein: helping to define the relationship between oligomers, protofibrils, and filaments. J Biol Chem 280:9678–9690

    Article  PubMed  CAS  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    Article  PubMed  CAS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT Jr (2000) Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920:42–45

    Article  PubMed  CAS  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  • Ebadi M (2001) Introduction. Oxidative stress in mitochondria disorders of aging. Biol Signals Recept 10:5–13

    Article  PubMed  CAS  Google Scholar 

  • Forno LS, DeLanney LE, Irwin I, Langston JW (1996) Electron microscopy of Lewy bodies in the amygdala-parahippocampal region: comparison with inclusion bodies in the MPTP-treated squirrel monkey. Adv Neurol 69:217–228

    PubMed  CAS  Google Scholar 

  • Friedlich AL, Tanzi RE, Rogers JT (2007) The 5′-untranslated region of Parkinson’s disease alpha-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 12:222–223

    Article  PubMed  CAS  Google Scholar 

  • German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514

    Article  PubMed  CAS  Google Scholar 

  • Giasson BI, Uryu K, Trojanowski JQ, Lee VM (1999) Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274:7619–7622

    Article  PubMed  CAS  Google Scholar 

  • Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B (2002) Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem 277:16116–16123

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143

    PubMed  CAS  Google Scholar 

  • Grant RJ, Clarke PB (2002) Susceptibility of ascending dopamine projections to 6-hydroxydopamine in rats: effect of hypothermia. Neuroscience 115:1281–1294

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E (1998) Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 799:301–306

    Article  PubMed  CAS  Google Scholar 

  • He Y, Thong PS, Lee T, Leong SK, Shi CY, Wong PT, Yuan SY, Watt F (1996) Increased iron in the substantia nigra of 6-OHDA induced parkinsonian rats: a nuclear microscopy study. Brain Res 735:149–153

    Article  PubMed  CAS  Google Scholar 

  • He Y, Lee T, Leong SK (1999) Time course of dopaminergic cell death and changes in iron, ferritin and transferrin levels in the rat substantia nigra after 6-hydroxydopamine (6-OHDA) lesioning. Free Radic Res 31:103–112

    Article  PubMed  CAS  Google Scholar 

  • Hung HC, Lee EH (1996) The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP + toxicity: role of BDNF gene expression. Brain Res Mol Brain Res 41:14–26

    Article  PubMed  CAS  Google Scholar 

  • Hung HC, Lee EH (1998) MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic Biol Med 24:76–84

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA, Kienzl E, Rumpelmaier G, Paulus W, Riederer P, Stachelberger H, Youdim MB, Ben-Shachar D (1993) Iron and ferritin in substantia nigra in Parkinson’s disease. Adv Neurol 60:267–272

    PubMed  CAS  Google Scholar 

  • Jiang H, Qian ZM, Xie JX (2003) Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice. Sheng Li Xue Bao 55:571–576

    PubMed  CAS  Google Scholar 

  • Jiang H, Luan Z, Wang J, Xie J (2006) Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int 49:605–609

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Song N, Xu H, Zhang S, Wang J, Xie J (2010) Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Res 20:345–356

    Article  PubMed  CAS  Google Scholar 

  • Kostka M, Hogen T, Danzer KM et al (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283:10992–11003

    Article  PubMed  CAS  Google Scholar 

  • Maingay M, Romero-Ramos M, Carta M, Kirik D (2006) Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression. Neurobiol Dis 23:522–532

    Article  PubMed  CAS  Google Scholar 

  • McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56:149–162

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, Lau YS (2002) Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956:156–165

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Imai H, Endo K, Yokomizo K, Murata Y, Hattori N, Mizuno Y (1994) Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 168:251–253

    Article  PubMed  CAS  Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1:129–169

    Article  PubMed  CAS  Google Scholar 

  • Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20:6048–6054

    PubMed  CAS  Google Scholar 

  • Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK (2007) Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. J Neurosci 27:6914–6922

    Article  PubMed  CAS  Google Scholar 

  • Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601

    Article  PubMed  CAS  Google Scholar 

  • Ryvlin P, Broussolle E, Piollet H, Viallet F, Khafallah Y, Chazot G (1995) Magnetic resonance imaging evidence of decreased putaminal iron content in idiopathic Parkinson’s disease. Arch Neurol 52:583–588

    PubMed  CAS  Google Scholar 

  • Salazar J, Mena N, Hunot S, Prigent A et al (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 105:18578–18583

    Article  PubMed  CAS  Google Scholar 

  • Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56:978–982

    Article  PubMed  CAS  Google Scholar 

  • Song N, Jiang H, Wang J, Xie JX (2007) Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx. J Neurosci Res 85:3118–3126

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom E, Fredriksson A, Archer T (1990) Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: a model for Parkinson’s disease. Brain Res 528:181–188

    Article  PubMed  CAS  Google Scholar 

  • Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62:134–146

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jiang H, Xie JX (2003) Correlation between iron levels and degeneration of dopaminergic neurons in rat nigrostriatal system during the early 6-OHDA lesions in medial forebrain bundle. Sheng Li Xue Bao 55:422–427

    PubMed  CAS  Google Scholar 

  • Wang J, Qian ZM, Jiang H, Xie J, Ke Y (2005) Treatment with nerve growth factor decreases expression of divalent metal transporter 1 and transferrin receptor in PC12 cells. Neurochem Int 47:514–517

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Xu HM, Yang HD, Du XX, Jiang H, Xie JX (2009) Rg1 reduces nigral iron levels of MPTP-treated C57BL6 mice by regulating certain iron transport proteins. Neurochem Int 54:43–48

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Hunt SP, Jenner P, Marsden CD (1987) An immunohistochemical study of the acute and long-term effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the marmoset. Neuroscience 23:1025–1039

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Jiang H, Wang J, Xie J (2010) Rg1 protects the MPP(+)-treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake. Neuropharmacology 58(2):488–494

    Google Scholar 

  • Zhang S, Wang J, Song N, Xie J, Jiang H (2009) Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. Neurobiol Aging 30:1466–1476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Program of Basic Research sponsored by the Ministry of Science and Technology of China (2006CB500704), the National Foundation of Natural Science of China (30930036, 30870858) and the Natural Science Fund of Shandong Province for Distinguished Young Scholars (JQ200807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxia Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, Z., Jiang, H., Xu, H. et al. Increased iron levels correlate with the selective nigral dopaminergic neuron degeneration in Parkinson’s disease. J Neural Transm 118, 361–369 (2011). https://doi.org/10.1007/s00702-010-0434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0434-3

Keywords

Navigation