Skip to main content

Advertisement

Log in

A Three-Day Consecutive Fingolimod Administration Improves Neurological Functions and Modulates Multiple Immune Responses of CCI Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excessive inflammation after traumatic brain injury (TBI) is a major cause of secondary TBI. Though several inflammatory biomarkers have been postulated as the risk factors of TBI, there has not been any comprehensive description of them. Fingolimod, a new kind of immunomodulatory agent which can diminish various kinds of inflammatory responses, has shown additional therapeutic effects in the treatment of intracranial cerebral hematoma (ICH), ischemia, spinal cord injury (SCI), and many other CNS disorders. However, its therapeutic application has not been confirmed in TBI. Thus, we hypothesized that a 3-day consecutive fingolimod administration could broadly modulate the inflammatory reactions and improve the outcomes of TBI. The TBI models of C57/BL6 mice were established with the controlled cortical impact injury (CCI) system. A 3-day consecutive fingolimod therapy (given at 1, 24, and 48 h post injury) was performed at a dose of 1 mg/kg. The flow cytometry, immunoflourence, cytokine array, and ELISA were all applied to evaluate the immune cells and inflammatory markers in the injured brains. Immunohistochemical staining with anti-APP antibody was performed to assess the axonal damage. The neurological functions of these TBI models were assessed by mNSS/Rota-rod and Morris water maze (MWM). The brain water content and integrity of the blood-brain barrier (BBB) were also observed. On the 3rd day after TBI, the accumulation of inflammatory cytokines and chemokines reached the peak and administration of fingolimod reduced as many as 20 kinds of cytokines and chemokines. Fingolimod decreased infiltrated T lymphocytes and NK cells but increased the percentage of regulatory T (Treg) cells, and the concentration of IL-10 on the 3rd day after TBI. Fingolimod also notably attenuated the general activated microglia but augmented the M2/M1 ratio accompanied by decreased axonal damage. The neurological functions were improved after the fingolimod treatment accompanied with alleviation of the brain edema and BBB damage. This study suggests that the 3-day consecutive fingolimod administration extensively modulates multiple immuno-inflammatory responses and improves the neurological deficits after TBI, and therefore, it may be a new approach to the treatment of secondary TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gerbatin RDR, Cassol G, Dobrachinski F, Ferreira APO, Quines CB et al (2016) Guanosine protects against traumatic brain injury-induced functional impairments and neuronal loss by modulating excitotoxicity, mitochondrial dysfunction, and inflammation. Mol Neurobiol. doi:10.1007/s12035-016-0238-z

    PubMed  Google Scholar 

  2. Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 9:236. doi:10.1186/1742-2094-9-236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Su Y, Fan W, Ma Z, Wen X, Wang W et al (2014) Taurine improves functional and histological outcomes and reduces inflammation in traumatic brain injury. Neuroscience 266:56–65. doi:10.1016/j.neuroscience.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  4. Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15(12):8223–8233

    CAS  PubMed  Google Scholar 

  5. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175. doi:10.1038/nri3399

    Article  CAS  PubMed  Google Scholar 

  6. Gyoneva S, Ransohoff RM (2015) Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell – cell communication by chemokines. Trends Pharmacol Sci 36(7):471–480. doi:10.1016/j.tips.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hsieh CL, Kim CC, Ryba BE, Niemi EC, Bando JK et al (2013) Traumatic brain injury induces macrophage subsets in the brain. Eur J Immunol 43(8):2010–2022. doi:10.1002/eji.201243084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fee D, Crumbaugh A, Jacques T, Herdrich B, Sewell D et al (2003) Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. J Neuroimmunol 136(1–2):54–66. doi:10.1016/S0165-5728(03)00008-0

    Article  CAS  PubMed  Google Scholar 

  9. Walsh JT, Hendrix S, Boato F, Smirnov I, Zheng J et al (2015) MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J Clin Invest 125(2):699–714. doi:10.1172/JCI76210

    Article  PubMed  PubMed Central  Google Scholar 

  10. PK C, KT L, JY J, YY W, TC H et al (2012) Indomethacin protects rats from neuronal damage induced by traumatic brain injury and suppresses hippocampal IL-1β release through the inhibition of Nogo-A expression. J Neuroinflammation 7:9–121

    Google Scholar 

  11. Baratz R, Tweedie D, Wang J, Rubovitch V, Luo W et al (2015) Transiently lowering tumor necrosis factor-α synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflamm 12(1):45. doi:10.1186/s12974-015-0237-4

    Article  Google Scholar 

  12. Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ (2015) Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism: 271678X-15620204X.doi:10.1177/0271678X15620204.

  13. Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J et al (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial) : randomised placebo-controlled trial. Lancet 364(9442):1321–1328. doi:10.1016/S0140-6736(04)17188-2

    Article  PubMed  Google Scholar 

  14. Bergold PJ (2015) Treatment of traumatic brain injury with anti-inflammatory drugs. Expreiment Neurology 275(Pt3):367–380

    Google Scholar 

  15. Brunkhorst R, Vutukuri R, Pfeilschifter W (2014) Fingolimod for the treatment of neurological diseases—state of play and future perspectives. Front Cell Neurosci 8.doi:10.3389/fncel.2014.00283.

  16. Fu Y, Hao J, Zhang N, Ren L, Sun N et al (2014) Fingolimod for the treatment of intracerebral hemorrhage. Jama Neurol 71(9):1092. doi:10.1001/jamaneurol.2014.1065

    Article  PubMed  Google Scholar 

  17. Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O et al (2013) Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 241:45–55. doi:10.1016/j.expneurol.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  18. Kangmin DL, Woon NC, Carmen SB, Martin RG, Robert SG, Raymond JC, Harold FY, Bruce EM (2009) FTY720 reduces inflammation and promotes functional recovery after spinal cord injury. J Neurotrauma 26(12):2335–2344. doi:10.1089/neu.2008.0840

    Article  Google Scholar 

  19. Noda H, Takeuchi H, Mizuno T, Suzumura A (2013) Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol 256(1–2):13–18. doi:10.1016/j.jneuroim.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Fauser U, Schluesener HJ (2008) Early attenuation of lesional interleukin-16 up-regulation by dexamethasone and FTY720 in experimental traumatic brain injury. Neuropath Appl Neuro 34(3):330–339. doi:10.1111/j.1365-2990.2007.00893.x

    Article  CAS  Google Scholar 

  21. Zhang Z, Zhang Z, Fauser U, Artelt M, Burnet M, Schluesener HJ (2007) FTY720 attenuates accumulation of EMAP-II+ and MHC-II+ monocytes in early lesions of rat traumatic brain injury. J Cell Mol Med 11(2):307–314. doi:10.1111/j.1582-4934.2007.00019.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mencl S, Hennig N, Hopp S, Schuhmann MK, Albert-Weissenberger C et al (2014) FTY720 does not protect from traumatic brain injury in mice despite reducing posttraumatic inflammation. J Neuroimmunol 274(1–2):125–131. doi:10.1016/j.jneuroim.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Ding K, Wang H, Wu Y, Xu J (2016) Traumatic brain injury-induced neuronal apoptosis is reduced through modulation of PI3K and autophagy pathways in mouse by FTY720. Cell Mol Neurobiol 36(1):131–142. doi:10.1007/s10571-015-0227-1

    Article  PubMed  Google Scholar 

  24. Budde K, Schmouder RL, Nashan B, Brunkhorst R, Lücker PW (2003) Pharmacodynamics of single doses of the novel immunosuppressant FTY720 in stable renal transplant patients. American Journal of Transplantation Official J 38:683–694

    Google Scholar 

  25. Chen J, Li Y, Wang L, Zhang Z, Lu D et al (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32(4):1005–1011

    Article  CAS  PubMed  Google Scholar 

  26. Bai XF (2004) CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. J Exp Med 200(4):447–458. doi:10.1084/jem.20040131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang Z, Gan Y, Liu Q, Yin JX, Liu Q et al (2014) CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation 11:26. doi:10.1186/1742-2094-11-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M (2015) The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Brit J Pharmacol 172(1):80–92. doi:10.1111/bph.12938

    Article  CAS  Google Scholar 

  29. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, TK M (2001) The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 24(1–3):169–181

    CAS  PubMed  Google Scholar 

  30. Wei Y, Yemisci M, Kim H, Yung LM, Shin HK et al (2011) Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann Neurol 69(1):119–129. doi:10.1002/ana.22186

    Article  CAS  PubMed  Google Scholar 

  31. Li P, Gan Y, Sun B, Zhang F, Lu B et al (2013) Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol 74(3):458–471. doi:10.1002/ana.23815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199. doi:10.1038/nm.1927

    Article  CAS  PubMed  Google Scholar 

  33. Taams LS, van Amelsfort JMR, Tiemessen MM, Jacobs KMG, de Jong EC et al (2005) Modulation of monocyte/macrophage function by human CD4 + CD25+ regulatory T cells. Hum Immunol 66(3):222–230. doi:10.1016/j.humimm.2004.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vignali DAA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532. doi:10.1038/nri2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walker PA, Bedi SS, Shah SK, Jimenez F, Xue H et al (2012) Intravenous multipotent adult progenitor cell therapy after traumatic brain injury: modulation of the resident microglia population. J Neuroinflammation 9:228. doi:10.1186/1742-2094-9-228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li M, Lin YP, Chen JL, Li H, Jiang RC, Zhang JN (2015) Role of regulatory T cell in clinical outcome of traumatic brain injury. Chin Med J 128(8):1072–1078. doi:10.4103/0366

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hu X, Li P, Guo Y, Wang H, Leak RK et al (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. doi:10.1161/STROKEAHA.112.659656

    Article  CAS  PubMed  Google Scholar 

  38. Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7(4):366–377. doi:10.1016/j.nurt.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loane DJ, Kumar A (2015) Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol 275(Pt 3):316–327. doi:10.1016/j.expneurol.2015.08.018

    PubMed  PubMed Central  Google Scholar 

  40. Hu X, Leak RK, Shi Y, Suenaga J, Gao Y et al (2015) Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11(1):56–64. doi:10.1038/nrneurol.2014.207

    Article  PubMed  Google Scholar 

  41. Wang G, Zhang J, Hu X, Zhang L, Mao L et al (2013) Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab 33(12):1864–1874. doi:10.1038/jcbfm.2013.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136(1):28–42. doi:10.1093/brain/aws322

    Article  PubMed  PubMed Central  Google Scholar 

  44. Semple BD, Bye N, Ziebell JM, Morganti-Kossmann MC (2010) Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis 40(2):394–403. doi:10.1016/j.nbd.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  45. Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11(11):762–774. doi:10.1038/nri3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC (2010) Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/−mice. J Cereb Blood Flow Metab 30(4):769–782. doi:10.1038/jcbfm.2009.262

    Article  PubMed  Google Scholar 

  47. Zhang Y, Gao Z, Wang D, Zhang T, Sun B et al (2014) Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation 11:79. doi:10.1186/1742-2094-11-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Di Battista AP, Rhind SG, Hutchison MG, Hassan S, Shiu MY, et al. (2016) Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflamm 13(1).doi:10.1186/s12974-016-0500-3.

  49. Knoblach SM, Faden AI (1998) Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 153:143–151

    Article  CAS  PubMed  Google Scholar 

  50. Hawryluk GWJ, Bullock MR (2016) Past, present, and future of traumatic brain injury research. Neurosurg Clin N Am 27(4):375–396. doi:10.1016/j.nec.2016.05.002

    Article  PubMed  Google Scholar 

  51. Margulies SHR (2009) Combination therapies for traumatic brain injury: prospective considerations. J Neurotrauma 26(5):925–939. doi:10.1089/neu.2008-0794

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Guoqiang Chang, Guili Yang, Weiyun Cui, Lei Zhou, and Li Liu from the Tianjin Neurological Institute for their assistance with the experiments and data analyses. This work was supported by the National Natural Science Foundation of China (grant81271359, 81330059, and 81671380), the Ontario-China Research and Innovation Fund (OCRIF, 2011DFG33430), and the Tianjin Research Program of Application Foundation and Advanced Technology (grant 14ZCZDSY00179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcai Jiang.

Additional information

Chuang Gao and Yu Qian contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Qian, Y., Huang, J. et al. A Three-Day Consecutive Fingolimod Administration Improves Neurological Functions and Modulates Multiple Immune Responses of CCI Mice. Mol Neurobiol 54, 8348–8360 (2017). https://doi.org/10.1007/s12035-016-0318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0318-0

Keywords

Navigation