Skip to main content
Log in

Ovariectomy-Induced Mitochondrial Oxidative Stress, Apoptosis, and Calcium Ion Influx Through TRPA1, TRPM2, and TRPV1 Are Prevented by 17β-Estradiol, Tamoxifen, and Raloxifene in the Hippocampus and Dorsal Root Ganglion of Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Relative 17β-estradiol (E2) deprivation and excessive production of mitochondrial oxygen free radicals (OFRs) with a high amount of Ca2+ influx TRPA1, TRPM2, and TRPV1 activity is one of the main causes of neurodegenerative disease in postmenopausal women. In addition to the roles of tamoxifen (TMX) and raloxifene (RLX) in cancer and bone loss treatments, regulator roles in Ca2+ influx and mitochondrial oxidative stress in neurons have not been reported. The aim of this study was to evaluate whether TMX and RLX interactions with TRPA1, TRPM2, and TRPV1 in primary hippocampal (HPC) and dorsal root ganglion (DRG) neuron cultures of ovariectomized (OVX) rats. Forty female rats were divided into five groups: a control group, an OVX group, an OVX+E2 group, an OVX+TMX group, and an OVX+RLX group. The OVX+E2, OVX+TMX, and OVX+RLX groups received E2, TMX, and RLX, respectively, for 14 days after the ovariectomy. E2, ovariectomy-induced TRPA1, TRPM2, and TRPV1 current densities, as well as accumulation of cytosolic free Ca2+ in the neurons, were returned to the control levels by E2, TMX, and RLX treatments. In addition, E2, TMX, and RLX via modulation of TRPM2 and TRPV1 activity reduced ovariectomy-induced mitochondrial membrane depolarization, apoptosis, and cytosolic OFR production. TRPM2, TRPV1, PARP, and caspase-3 and caspase-9 expressions were also decreased in the neurons by the E2, TMX, and RLX treatments. In conclusion, we first reported the molecular effects of E2, TMX, and RLX on TRPA1, TRPM2, and TRPV1 channel activation in the OVX rats. In addition, we observed neuroprotective effects of E2, RLX, and TMX on oxidative and apoptotic injuries of the hippocampus and peripheral pain sensory neurons (DRGs) in the OVX rats.

Possible molecular pathways of involvement of DEX in cerebral ischemia-induced apoptosis, oxidative stress, and calcium accumulation through TRPA1, TRPM2 and TRPV1 in the hippocampus and DRG neurons of rats. The N domain of the TRPM2 contains ADP-ribose (ADPR) pyrophosphate enzyme, which is separately activated by ADPR and oxidative stress, although the channel is reversibly inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA). The TRPV1 is also activated by mitochondrial oxidative stress and capsaicin, and it is blocked by capsazepine (CPZ). TRPA1 is also activated by oxidative stress it is inhibited by AP18. Increased cytosolic Ca2+ concentration through TRPA1, TRPM2 and TRPV1 in ovariectomized (OVX) rats may lead to neuronal toxicity, reactive oxygen species (ROS) processes, and eventual cell death. 17β-Estradiol (E2), tamoxifen (TMX), and raloxifene (RLX) reduced oxidative stress, apoptosis (including caspase-3 and caspase-9), mitochondrial membrane depolarization, and Ca2+ influx through the inhibition of TRPA1, TRPM2 and TRPV1 activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

[Ca2+]i :

Cytosolic free calcium ion

ACA:

N-(p-Amylcinnamoyl) anthranilic acid

ADPR:

ADP-ribose

CAP:

Capsaicin

CHPx:

Cumene hydroperoxide

CPZ:

Capsazepine

DMSO:

Dimethyl sulfoxide

DRG:

Dorsal root ganglion

E2:

17β-Estradiol

EGTA:

Ethylene glycol-bis[2-aminoethyl-ether]-N,N,N,N-tetraacetic acid

HPC:

Hippocampal

MPT:

Permeability transition

OFR:

Oxygen free radials

PARP:

Poly(ADP-ribose) polymerase

RLX:

Raloxifene

TMX:

Tamoxifen

TRP:

Transient receptor potential

TRPA1:

Transient receptor potential ankyrin 1

TRPM2:

Transient receptor potential melastatin

TRPV1:

Transient receptor potential vanilloid 1

VGCC:

Voltage-gated calcium channels

WC:

Whole cell

References

  1. Nazıroğlu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  2. Espino J, Bejarano I, Redondo PC, Rosado JA, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2010) Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: evidence for the involvement of mitochondria and Bax activation. J Membr Biol 233:105–118

    Article  CAS  PubMed  Google Scholar 

  3. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    Article  CAS  PubMed  Google Scholar 

  4. Nazıroğlu M, Lückhoff A (2008) A calcium influx pathway regulated separately by oxidative stress and ADP-ribose in TRPM2 channels: single channel events. Neurochem Res 33:1256–1262

    Article  PubMed  Google Scholar 

  5. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997(389):816–824

    Google Scholar 

  6. Nazıroğlu M (2015) TRPV1 channel: a potential drug target for treating epilepsy. Curr Neuropharmacol 13:239–247

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pecze L, Jósvay K, Blum W, Petrovics G, Vizler C, Oláh Z, Schwaller B (2016) Activation of endogenous TRPV1 fails to induce overstimulation-based cytotoxicity in breast and prostate cancer cells but not in pain-sensing neurons. Biochim Biophys Acta 1863:2054–2064

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, Yamamoto S, Naito S et al (2011) TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol 7(10):701–711

    Article  CAS  PubMed  Google Scholar 

  9. Toda T, Yamamoto S, Yonezawa R, Mori Y, Shimizu S (2016) Inhibitory effects of Tyrphostin AG-related compounds on oxidative stress-sensitive transient receptor potential channel activation. Eur J Pharmacol 786:19–28

    Article  CAS  PubMed  Google Scholar 

  10. Wu YW, Bi YP, Kou XX, Xu W, Ma LQ, Wang KW, Gan YH, Ma XC (2010) 17-Beta-estradiol enhanced allodynia of inflammatory temporomandibular joint through upregulation of hippocampal TRPV1 in ovariectomized rats. J Neurosci 30:8710–8719

    Article  CAS  PubMed  Google Scholar 

  11. Kahya MC, Nazıroğlu M, Çiğ B. (2016) Modulation of diabetes-induced oxidative stress, apoptosis, and Ca2+ entry through TRPM2 and TRPV1 channels in dorsal root ganglion and hippocampus of diabetic rats by melatonin and selenium. Mol Neurobiol. 2016 [Epub ahead of print]. doi:10.1007/s12035-016-9727-3.

  12. Özdemir ÜS, Nazıroğlu M, Şenol N, Ghazizadeh V (2016) Hypericum perforatum attenuates spinal cord injury-induced oxidative stress and apoptosis in the dorsal root ganglion of rats: involvement of TRPM2 and TRPV1 channels. Mol Neurobiol 53:3540–3551

    Article  PubMed  Google Scholar 

  13. Obata K, Katsura H, Mizushima T, Yamanaka H, Kobayashi K, Dai Y, Fukuoka T, Tokunaga A et al (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cristino L, de Petrocellis L, Pryce G, Baker D, Guglielmotti V, Di Marzo V (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139:1405–1415

    Article  CAS  PubMed  Google Scholar 

  15. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    Article  CAS  PubMed  Google Scholar 

  16. Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204–214

    Article  CAS  PubMed  Google Scholar 

  17. Nativi C, Gualdani R, Dragoni E, Di Cesare ML, Sostegni S, Norcini M, Gabrielli G, la Marca G et al (2013) A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci Rep 3:2005

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cho T, Chaban VV (2012) Expression of P2X3 and TRPV1 receptors in primary sensory neurons from estrogen receptors-α and estrogen receptor-β knockout mice. Neuroreport 23:530–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kimelberg HK, Jin Y, Charniga C, Feustel PJ (2003) Neuroprotective activity of tamoxifen in permanent focal ischemia. J Neurosurg 99:138–142

    Article  CAS  PubMed  Google Scholar 

  20. Moreira PI, Custodio JB, Oliveira CR, Santos MS (2005) Brain mitochondrial injury induced by oxidative stress-related events is prevented by tamoxifen. Neuropharmacology 48:435–447

    Article  CAS  PubMed  Google Scholar 

  21. Osmanova S, Sezer E, Turan V, Zeybek B, Terek MC, Kanıt L (2011) The effects of raloxifene treatment on oxidative status in brain tissues and learning process of ovariectomized rats. Iran J Reprod Med 9:295–300

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ozgocmen S, Kaya H, Fadillioglu E, Yilmaz Z (2007) Effects of calcitonin, risedronate, and raloxifene on erythrocyte antioxidant enzyme activity, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Arch Med Res 38:196e205

    Article  Google Scholar 

  23. O’Neill K, Chen S, Brinton RD (2004) Impact of the selective estrogen receptor modulator, raloxifene, on neuronal survival and outgrowth following toxic insults associated with aging and Alzheimer’s disease. Exp Neurol 185:63–80

    Article  PubMed  Google Scholar 

  24. Moreira PI, Custódio JB, Nunes E, Oliveira PJ, Moreno A, Seiça R, Oliveira CR, Santos MS (2011) Mitochondria from distinct tissues are differently affected by 17β-estradiol and tamoxifen. J Steroid Biochem Mol Biol 123:8–16

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Lai B, Zheng P, Zhua YC, Yaoa T (2007) Raloxifene acutely reduces glutamate-induced intracellular calcium increase in cultured rat cortical neurons via inhibition of high-voltage-actıvated calcium current. Neuroscience 147:334–341

    Article  CAS  PubMed  Google Scholar 

  26. Dilek M, Nazıroğlu M, Oral BH, Övey İS, Küçükyaz M, Mungan MT, Kara HY, Sütçü R (2010) Melatonin modulates hippocampus NMDA receptors, blood and brain oxidative stress levels in ovariectomized rats. J Membr Biol 233:135–142

    Article  CAS  PubMed  Google Scholar 

  27. Kramer PR, Bellinger LL (2013) Modulation of temporomandibular joint nociception and inflammation in male rats after administering a physiological concentration of 17beta-oestradiol. Eur J Pain 17:174–184

    Article  CAS  PubMed  Google Scholar 

  28. Yazgan B, Yazgan Y, Övey İS (2016) Nazıroğlu M. Raloxifene and tamoxifen reduce PARP activity, cytokine and oxidative stress levels in the brain and blood of ovariectomized rats. J Mol Neurosci 60:214–222

    Article  CAS  PubMed  Google Scholar 

  29. Olah ME, Jackson MF, Li H, Perez Y, Sun HS, Kiyonaka S, Mori Y, Tymianski M et al (2009) Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 587(Pt 5):965–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grynkiewicz C, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  31. Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51:195–206

    Article  CAS  PubMed  Google Scholar 

  32. Nazıroğlu M, Dikici DM, Dursun Ş (2012) Role of oxidative stress and Ca2+ signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37:2065–2075

    Article  PubMed  Google Scholar 

  33. Nazıroğlu M (2015) Role of melatonin on calcium signaling and mitochondrial oxidative stress in epilepsy: focus on TRP channels. Tr J Biol 39:813–821

    Google Scholar 

  34. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  35. Phillips SM, Sherwin BB (1992) Effects on estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 17:485–495

    Article  CAS  PubMed  Google Scholar 

  36. Vega-Vela NE, Osorio D, Avila-Rodriguez M, Gonzalez J, García-Segura LM, Echeverria V, Barreto GE (2016) L-type calcium channels modulation by estradiol. Mol Neurobiol [Epub ahead of print]. doi:10.1007/s12035-016-0045-6

    Google Scholar 

  37. Malagarie-Cazenave S, Olea-Herrero N, Vara D, Díaz-Laviada I (2009) Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett 583:141–147

    Article  CAS  PubMed  Google Scholar 

  38. Zheng G, Hong S, Hayes JM, Wiley JW (2015) Chronic stress and peripheral pain: evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways. Exp Neurol 273:301–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scotland PE, Patil M, Belugin S, Henry MA, Goffin V, Hargreaves KM, Akopian AN (2011) Endogenous prolactin generated during peripheral inflammation contributes to thermal hyperalgesia. Eur J Neurosci 34:745–754

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pan Y, Huang S, Cai Z, Lan H, Tong Y, Yu X, Zhao G, Chen F (2016) TRPA1 and TRPM8 receptors may promote local vasodilation that aggravates oxaliplatin-induced peripheral neuropathy amenable to 17β-estradiol treatment. Curr Neurovasc Res 13:309-317

  41. Lee DY, Chai YG, Lee EB, Kim KW, Nah SY, Oh TH, Rhim H (2002) 17β-estradiol inhibits high-voltage-activated calcium channel currents in rat sensory neurons via a non-genomic mechanism. Life Sci 70:2047–2059

    Article  CAS  PubMed  Google Scholar 

  42. Chaban VV, Mayer EA, Ennes HS, Micevych PE (2003) Estradiol inhibits ATP-induced intracellular calcium concentration increase in dorsal root ganglia neurons. Neuroscience 118:941–948

    Article  CAS  PubMed  Google Scholar 

  43. Xu S, Cheng Y, Keast JR, Osborne PB (2008) 17beta-estradiol activates estrogen receptor beta-signalling and inhibits transient receptor potential vanilloid receptor 1 activation by capsaicin in adult rat nociceptor neurons. Endocrinology 149:5540–5548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cardoso CM, Almeida LM, Custódio JB (2004) Protection of tamoxifen against oxidation of mitochondrial thiols and NAD(P)H underlying the permeability transition induced by prooxidants. Chem Biol Interact 148:149–161

    Article  CAS  PubMed  Google Scholar 

  45. Kumar VS, Gopalakrishnan A, Nazıroğlu M, Rajanikant GK (2014) Calcium ion-the key player in cerebral ischemia. Curr Med Chem 21:2065–2075

    Article  PubMed  Google Scholar 

  46. Yu X, Rajala RV, McGinnis JF, Li F, Anderson RE, Yan X, Li S, Elias RV et al (2004) Involvement of insulin/phosphoinositide 3-kinase/Akt signal pathway in 17 beta-estradiol-mediated neuroprotection. J Biol Chem 26(279):13086–13094

    Article  Google Scholar 

  47. Feng Y, Wang B, Du F, Li H, Wang S, Hu C, Zhu C, Yu X (2013) The involvement of PI3K-mediated and L-VGCC-gated transient Ca2+ influx in 17β-estradiol-mediated protection of retinal cells from H2O2-induced apoptosis with Ca2+ overload. PLoS One 8:e77218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Irnaten M, Blanchard-Gutton N, Praetorius J, Harvey BJ (2009) Rapid effects of 17 beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells. Steroids 74:642–649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The abstracts of the study were presented at the 6th World Congress of Oxidative Stress, Calcium Signaling and TRP Channels, held on 24 and 27 May 2016 in Isparta, Turkey (www.cmos.org.tr). The authors wish to thank the researcher technicians İshak Suat Övey and Muhammet Şahin (Neuroscience Research Center, SDU, Isparta, Turkey) for helping with the Western blot and plate reader analyses.

Authorship Contributions

MN formulated the hypothesis and was responsible for writing the report. Ovariectomy of rats was performed by MN. The analyses were performed by YY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

Funding

Unit of Scientific Research Project (BAP) of Suleyman Demirel University.

Financial Disclosure

This study was partially supported by the Unit of Scientific Research Project (BAP) of Suleyman Demirel University in Isparta, Turkey (Project Number BAP: 4135-YL2-14). There is no financial disclosure for the current study.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazğan, Y., Nazıroğlu, M. Ovariectomy-Induced Mitochondrial Oxidative Stress, Apoptosis, and Calcium Ion Influx Through TRPA1, TRPM2, and TRPV1 Are Prevented by 17β-Estradiol, Tamoxifen, and Raloxifene in the Hippocampus and Dorsal Root Ganglion of Rats. Mol Neurobiol 54, 7620–7638 (2017). https://doi.org/10.1007/s12035-016-0232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0232-5

Keywords

Navigation