Skip to main content

Advertisement

Log in

Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic insults by specific mechanisms. We tested the hypothesis that IPC attenuates post-ischemic neuronal death in the gerbil hippocampal CA1 region (CA1) throughout hypoxia inducible factor-1α (HIF-1α) and its associated factors such as vascular endothelial growth factor (VEGF) and nuclear factor-kappa B (NF-κB). Lethal ischemia (LI) without IPC increased expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) in CA1 pyramidal neurons at 12 h and/or 1-day post-LI; thereafter, their expressions were decreased in the CA1 pyramidal neurons with time and newly expressed in non-pyramidal cells (pericytes), and the CA1 pyramidal neurons were dead at 5-day post-LI, and, at this point in time, their immunoreactivities were newly expressed in pericytes. In animals with IPC subjected to LI (IPC/LI)-group), CA1 pyramidal neurons were well protected, and expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) were significantly increased compared to the sham-group and maintained after LI. Whereas, treatment with 2ME2 (a HIF-1α inhibitor) into the IPC/LI-group did not preserve the IPC-mediated increases of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) expressions and did not show IPC-mediated neuroprotection. In brief, IPC protected CA1 pyramidal neurons from LI by upregulation of HIF-1α, VEGF, and p-IκB-α expressions. This study suggests that IPC increases HIF-1α expression in CA1 pyramidal neurons, which enhances VEGF expression and NF-κB activation and that IPC may be a strategy for a therapeutic intervention of cerebral ischemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Current opinion in genetics & development 8(5):588–594

    Article  CAS  Google Scholar 

  2. Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S (2000) Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J 113(9):836–839

    CAS  PubMed  Google Scholar 

  3. Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92(3):967–1003. doi:10.1152/physrev.00030.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones NM, Lee EM, Brown TG, Jarrott B, Beart PM (2006) Hypoxic preconditioning produces differential expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its regulatory enzyme HIF prolyl hydroxylase 2 in neonatal rat brain. Neurosci Lett 404(1–2):72–77. doi:10.1016/j.neulet.2006.05.049

    Article  CAS  PubMed  Google Scholar 

  6. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5(6):437–448. doi:10.1038/nrn1408

    Article  CAS  PubMed  Google Scholar 

  7. Chang YC, Huang CC (2006) Perinatal brain injury and regulation of transcription. Curr Opin Neurol 19(2):141–147. doi:10.1097/01.wco.0000218229.73678.a8

    Article  CAS  PubMed  Google Scholar 

  8. Chen C, Hu Q, Yan J, Lei J, Qin L, Shi X, Luan L, Yang L et al (2007) Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1alpha and apoptotic genes in a middle cerebral artery occlusion-induced focal ischemia rat model. J Neurochem 102(6):1831–1841. doi:10.1111/j.1471-4159.2007.04652.x

    Article  CAS  PubMed  Google Scholar 

  9. Aminova LR, Siddiq A, Ratan RR (2008) Antioxidants, HIF prolyl hydroxylase inhibitors or short interfering RNAs to BNIP3 or PUMA, can prevent prodeath effects of the transcriptional activator, HIF-1alpha, in a mouse hippocampal neuronal line. Antioxid Redox Signal 10(12):1989–1998. doi:10.1089/ars.2008.2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salhanick SD, Belikoff B, Orlow D, Holt D, Reenstra W, Buras JA (2006) Hyperbaric oxygen reduces acetaminophen toxicity and increases HIF-1alpha expression. Acad Emerg Med Off J Soc Acad Emerg Med 13(7):707–714. doi:10.1197/j.aem.2006.01.029

    Article  Google Scholar 

  11. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25. doi:10.1210/edrv.18.1.0287

    Article  CAS  PubMed  Google Scholar 

  12. Rosenstein JM, Krum JM (2004) New roles for VEGF in nervous tissue—beyond blood vessels. Exp Neurol 187(2):246–253. doi:10.1016/j.expneurol.2004.01.022

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Galvan V, Gorostiza O, Ataie M, Jin K, Greenberg DA (2006) Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Res 1115(1):186–193. doi:10.1016/j.brainres.2006.07.060

    Article  CAS  PubMed  Google Scholar 

  14. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660. doi:10.1038/nm0603-653

    Article  CAS  PubMed  Google Scholar 

  15. Zan L, Wu H, Jiang J, Zhao S, Song Y, Teng G, Li H, Jia Y et al (2011) Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochem Int 58(8):872–879. doi:10.1016/j.neuint.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stowe AM, Plautz EJ, Eisner-Janowicz I, Frost SB, Barbay S, Zoubina EV, Dancause N, Taylor MD et al (2007) VEGF protein associates to neurons in remote regions following cortical infarct. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 27(1):76–85. doi:10.1038/sj.jcbfm.9600320

    Article  CAS  Google Scholar 

  17. Marti HH, Risau W (1998) Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A 95(26):15809–15814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee MY, Ju WK, Cha JH, Son BC, Chun MH, Kang JK, Park CK (1999) Expression of vascular endothelial growth factor mRNA following transient forebrain ischemia in rats. Neurosci Lett 265(2):107–110

    Article  CAS  PubMed  Google Scholar 

  19. Bernaudin M, Nedelec AS, Divoux D, MacKenzie ET, Petit E, Schumann-Bard P (2002) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 22(4):393–403. doi:10.1097/00004647-200204000-00003

    Article  CAS  Google Scholar 

  20. Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2001) Activation of the nuclear factor-kappaB is a key event in brain tolerance. The Journal of neuroscience : the official journal of the Society for Neuroscience 21(13):4668–4677

    CAS  Google Scholar 

  21. Simakajornboon N, Gozal E, Gozal D (2001) Developmental patterns of NF-kappaB activation during acute hypoxia in the caudal brainstem of the rat. Brain Res Dev Brain Res 127(2):175–183

    Article  CAS  PubMed  Google Scholar 

  22. Bhakar AL, Tannis LL, Zeindler C, Russo MP, Jobin C, Park DS, MacPherson S, Barker PA (2002) Constitutive nuclear factor-kappa B activity is required for central neuron survival. The Journal of neuroscience : the official journal of the Society for Neuroscience 22(19):8466–8475

    CAS  Google Scholar 

  23. Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi FM, Pfeiffer J, Kaltschmidt C, Israel A et al (2003) Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection. The Journal of neuroscience : the official journal of the Society for Neuroscience 23(28):9403–9408

    CAS  Google Scholar 

  24. Gorlach A, Bonello S (2008) The cross-talk between NF-kappaB and HIF-1: further evidence for a significant liaison. The Biochemical journal 412(3):e17–e19. doi:10.1042/BJ20080920

    Article  PubMed  Google Scholar 

  25. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  PubMed  Google Scholar 

  26. Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Ohtsuki T, Hata R, Ueda H, Handa N et al (1991) ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res 561(2):203–211

    Article  CAS  PubMed  Google Scholar 

  27. Kirino T, Nakagomi T, Kanemitsu H, Tamura A (1996) Ischemic tolerance. Adv Neurol 71:505–511

    CAS  PubMed  Google Scholar 

  28. Nakamura H, Katsumata T, Nishiyama Y, Otori T, Katsura K, Katayama Y (2006) Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils. Life Sci 78(15):1713–1719. doi:10.1016/j.lfs.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  29. Della-Morte D, Guadagni F, Palmirotta R, Ferroni P, Testa G, Cacciatore F, Abete P, Rengo F et al (2012) Genetics and genomics of ischemic tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics 13(15):1741–1757. doi:10.2217/pgs.12.157

    Article  CAS  PubMed  Google Scholar 

  30. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239(1):57–69

    Article  CAS  PubMed  Google Scholar 

  31. Shenaq M, Kassem H, Peng C, Schafer S, Ding JY, Fredrickson V, Guthikonda M, Kreipke CW et al (2012) Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1alpha after traumatic brain injury (TBI). J Neurol Sci 323(1–2):134–140. doi:10.1016/j.jns.2012.08.036

    Article  CAS  PubMed  Google Scholar 

  32. Lee JC, Kim IH, Park JH, Ahn JH, Cho JH, Cho GS, Tae HJ, Chen BH et al (2015) Ischemic preconditioning protects hippocampal pyramidal neurons from transient ischemic injury via the attenuation of oxidative damage through upregulating heme oxygenase-1. Free Radic Biol Med 79:78–90. doi:10.1016/j.freeradbiomed.2014.11.022

    Article  CAS  PubMed  Google Scholar 

  33. Lee JC, Kim IH, Cho GS, Park JH, Ahn JH, Yan BC, Kwon HM, Kim YM et al (2014) Ischemic preconditioning-induced neuroprotection against transient cerebral ischemic damage via attenuating ubiquitin aggregation. J Neurol Sci 336(1–2):74–82. doi:10.1016/j.jns.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  34. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874(2):123–130

    Article  CAS  PubMed  Google Scholar 

  35. Ozkan A, Sen HM, Sehitoglu I, Alacam H, Guven M, Aras AB, Akman T, Silan C et al (2015) Neuroprotective effect of humic acid on focal cerebral ischemia injury: an experimental study in rats. Inflammation 38(1):32–39. doi:10.1007/s10753-014-0005-0

    Article  CAS  PubMed  Google Scholar 

  36. Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol 62(3):201–208

    Article  CAS  PubMed  Google Scholar 

  37. Janac B, Radenovic L, Selakovic V, Prolic Z (2006) Time course of motor behavior changes in Mongolian gerbils submitted to different durations of cerebral ischemia. Behav Brain Res 175(2):362–373. doi:10.1016/j.bbr.2006.09.008

    Article  PubMed  Google Scholar 

  38. Selakovic V, Korenic A, Radenovic L (2011) Spatial and temporal patterns of oxidative stress in the brain of gerbils submitted to different duration of global cerebral ischemia. International journal of developmental neuroscience: the official journal of the International Society for Developmental Neuroscience 29(6):645–654. doi:10.1016/j.ijdevneu.2011.02.009

    Article  CAS  Google Scholar 

  39. Lee JC, Ahn JH, Kim IH, Park JH, Yan BC, Cho GS, Ohk TG, Park CW et al (2014) Transient ischemia-induced change of CCR7 immunoreactivity in neurons and its new expression in astrocytes in the gerbil hippocampus. J Neurol Sci 336(1–2):203–210. doi:10.1016/j.jns.2013.10.041

    Article  CAS  PubMed  Google Scholar 

  40. Freret T, Valable S, Chazalviel L, Saulnier R, Mackenzie ET, Petit E, Bernaudin M, Boulouard M et al (2006) Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur J Neurosci 23(7):1757–1765. doi:10.1111/j.1460-9568.2006.04699.x

    Article  PubMed  Google Scholar 

  41. Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U et al (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 22(5):520–525. doi:10.1097/00004647-200205000-00003

    Article  CAS  Google Scholar 

  42. Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. The Journal of neuroscience : the official journal of the Society for Neuroscience 27(23):6320–6332. doi:10.1523/JNEUROSCI.0449-07.2007

    Article  CAS  Google Scholar 

  43. Bergeron M, Gidday JM, Yu AY, Semenza GL, Ferriero DM, Sharp FR (2000) Role of hypoxia-inducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol 48(3):285–296

    Article  CAS  PubMed  Google Scholar 

  44. Vangeison G, Carr D, Federoff HJ, Rempe DA (2008) The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. The Journal of neuroscience: the official journal of the Society for Neuroscience 28(8):1988–1993. doi:10.1523/JNEUROSCI.5323-07.2008

    Article  CAS  Google Scholar 

  45. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  46. Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(14):5731–5740

    CAS  Google Scholar 

  47. Silverman WF, Krum JM, Mani N, Rosenstein JM (1999) Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 90(4):1529–1541

    Article  CAS  PubMed  Google Scholar 

  48. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111(12):1843–1851. doi:10.1172/JCI17977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han MK, Kim M, Bae SY, Kang L, Han SY, Lee YS, Rha JH, Kim SU et al (2004) VEGF protects human cerebral hybrid neurons from in vitro ischemia. Neuroreport 15(5):847–850

    Article  CAS  PubMed  Google Scholar 

  50. Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A 97(18):10242–10247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hayashi T, Abe K, Itoyama Y (1998) Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 18(8):887–895. doi:10.1097/00004647-199808000-00009

    Article  CAS  Google Scholar 

  52. Cobbs CS, Chen J, Greenberg DA, Graham SH (1998) Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett 249(2–3):79–82

    Article  CAS  PubMed  Google Scholar 

  53. Laudenbach V, Fontaine RH, Medja F, Carmeliet P, Hicklin DJ, Gallego J, Leroux P, Marret S et al (2007) Neonatal hypoxic preconditioning involves vascular endothelial growth factor. Neurobiol Dis 26(1):243–252. doi:10.1016/j.nbd.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  54. Lee HT, Chang YC, Tu YF, Huang CC (2009) VEGF-A/VEGFR-2 signaling leading to cAMP response element-binding protein phosphorylation is a shared pathway underlying the protective effect of preconditioning on neurons and endothelial cells. The Journal of neuroscience: the official journal of the Society for Neuroscience 29(14):4356–4368. doi:10.1523/JNEUROSCI.5497-08.2009

    Article  CAS  Google Scholar 

  55. Feng Y, Rhodes PG, Bhatt AJ (2010) Hypoxic preconditioning provides neuroprotection and increases vascular endothelial growth factor A, preserves the phosphorylation of Akt-Ser-473 and diminishes the increase in caspase-3 activity in neonatal rat hypoxic-ischemic model. Brain Res 1325:1–9. doi:10.1016/j.brainres.2010.02.029

    Article  CAS  PubMed  Google Scholar 

  56. Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A (1998) Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 57(9):874–882

    Article  CAS  PubMed  Google Scholar 

  57. Liu S, Agalliu D, Yu C, Fisher M (2012) The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des 18(25):3653–3662

    Article  CAS  PubMed  Google Scholar 

  58. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen N, Chopp M (2000) VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106(7):829–838. doi:10.1172/JCI9369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yeh WL, Lu DY, Lin CJ, Liou HC, Fu WM (2007) Inhibition of hypoxia-induced increase of blood-brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation and VEGF expression. Mol Pharmacol 72(2):440–449. doi:10.1124/mol.107.036418

    Article  CAS  PubMed  Google Scholar 

  60. Mu D, Jiang X, Sheldon RA, Fox CK, Hamrick SE, Vexler ZS, Ferriero DM (2003) Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model. Neurobiol Dis 14(3):524–534

    Article  CAS  PubMed  Google Scholar 

  61. Kaur C, Sivakumar V, Zhang Y, Ling EA (2006) Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia 54(8):826–839. doi:10.1002/glia.20420

    Article  CAS  PubMed  Google Scholar 

  62. Ara J, Fekete S, Frank M, Golden JA, Pleasure D, Valencia I (2011) Hypoxic-preconditioning induces neuroprotection against hypoxia-ischemia in newborn piglet brain. Neurobiol Dis 43(2):473–485. doi:10.1016/j.nbd.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  63. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB (2002) Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. The Journal of neuroscience : the official journal of the Society for Neuroscience 22(15):6401–6407

    CAS  Google Scholar 

  64. Hagberg H, Mallard C (2005) Effect of inflammation on central nervous system development and vulnerability. Curr Opin Neurol 18(2):117–123

    Article  CAS  PubMed  Google Scholar 

  65. Wilhide ME, Tranter M, Ren X, Chen J, Sartor MA, Medvedovic M, Jones WK (2011) Identification of a NF-kappaB cardioprotective gene program: NF-kappaB regulation of Hsp70.1 contributes to cardioprotection after permanent coronary occlusion. J Mol Cell Cardiol 51(1):82–89. doi:10.1016/j.yjmcc.2011.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim EJ, Raval AP, Hirsch N, Perez-Pinzon MA (2010) Ischemic preconditioning mediates cyclooxygenase-2 expression via nuclear factor-kappa B activation in mixed cortical neuronal cultures. Transl Stroke Res 1(1):40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201(1):105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee for his technical help in this study. This work was supported by the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (NRF-2015M3A9B6066835), by the National Research Foundation of Korea (NRF-2013M3A9B6046563), which was funded by the Ministry of Science, ICT, and Future Planning, and by Bio-Synergy Research Project (NRF-2015M3A9C4076322) of the Ministry of Science, ICT and Future Planning through the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moo-Ho Won or Eun Joo Bae.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Jae-Chul Lee and Hyun-Jin Tae contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JC., Tae, HJ., Kim, I.H. et al. Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia. Mol Neurobiol 54, 6984–6998 (2017). https://doi.org/10.1007/s12035-016-0219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0219-2

Keywords

Navigation