Skip to main content

Advertisement

Log in

Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patzko A, Shy ME (2011) Update on Charcot-Marie-Tooth disease. Curr Neurol Neurosci Rep 11(1):78–88. doi:10.1007/s11910-010-0158-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8(7):654–667. doi:10.1016/S1474-4422(09)70110-3

    Article  CAS  PubMed  Google Scholar 

  3. Jani-Acsadi A, Krajewski K, Shy ME (2008) Charcot-Marie-Tooth neuropathies: diagnosis and management. Semin Neurol 28(2):185–194. doi:10.1055/s-2008-1062264

    Article  PubMed  Google Scholar 

  4. Reilly MM, Shy ME (2009) Diagnosis and new treatments in genetic neuropathies. J Neurol Neurosurg Psychiatry 80(12):1304–1314. doi:10.1136/jnnp.2008.158295

    Article  CAS  PubMed  Google Scholar 

  5. Patzko A, Shy ME (2012) Charcot-Marie-Tooth disease and related genetic neuropathies. Continuum (Minneap Minn) 18(1):39–59. doi:10.1212/01.CON.0000411567.34085.da

    Google Scholar 

  6. Ekins S, Litterman NK, Arnold RJ, Burgess RW, Freundlich JS, Gray SJ, Higgins JJ, Langley B, Willis DE, Notterpek L, Pleasure D, Sereda MW, Moore A (2015) A brief review of recent Charcot-Marie-Tooth research and priorities. F1000Research 4:53. doi:10.12688/f1000research.6160.1

  7. Yoshikawa H, Nishimura T, Nakatsuji Y, Fujimura H, Himoro M, Hayasaka K, Sakoda S, Yanagihara T (1994) Elevated expression of messenger RNA for peripheral myelin protein 22 in biopsied peripheral nerves of patients with Charcot-Marie-Tooth disease type 1A. Ann Neurol 35(4):445–450. doi:10.1002/ana.410350412

    Article  CAS  PubMed  Google Scholar 

  8. Hanemann CO, Stoll G, D'Urso D, Fricke W, Martin JJ, Van Broeckhoven C, Mancardi GL, Bartke I et al (1994) Peripheral myelin protein-22 expression in Charcot-Marie-Tooth disease type 1a sural nerve biopsies. J Neurosci Res 37(5):654–659. doi:10.1002/jnr.490370513

    Article  CAS  PubMed  Google Scholar 

  9. Patel PI, Roa BB, Welcher AA, Schoener-Scott R, Trask BJ, Pentao L, Snipes GJ, Garcia CA et al (1992) The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nat Genet 1(3):159–165. doi:10.1038/ng0692-159

    Article  CAS  PubMed  Google Scholar 

  10. Russo M, Laura M, Polke JM, Davis MB, Blake J, Brandner S, Hughes RA, Houlden H et al (2011) Variable phenotypes are associated with PMP22 missense mutations. Neuromuscul Disord 21(2):106–114. doi:10.1016/j.nmd.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  11. Lee SM, Chin LS, Li L (2012) Protein misfolding and clearance in demyelinating peripheral neuropathies: therapeutic implications. Commun Integr Biol 5(1):107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Warner LE, Roa BB, Lupski JR (1996) Absence of PMP22 coding region mutations in CMT1A duplication patients: further evidence supporting gene dosage as a mechanism for Charcot-Marie-Tooth disease type 1A. Hum Mutat 8(4):362–365. doi:10.1002/(SICI)1098-1004(1996)8:4<362::AID-HUMU10>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  13. Pennuto M, Tinelli E, Malaguti M, Del Carro U, D’Antonio M, Ron D, Quattrini A, Feltri ML et al (2008) Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 57(3):393–405. doi:10.1016/j.neuron.2007.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seidl AH (2014) Regulation of conduction time along axons. Neuroscience 276:126–134. doi:10.1016/j.neuroscience.2013.06.047

    Article  CAS  PubMed  Google Scholar 

  15. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. doi:10.1146/annurev-cellbio-100913-013101

    Article  CAS  PubMed  Google Scholar 

  16. Newbern J, Birchmeier C (2010) Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 21(9):922–928. doi:10.1016/j.semcdb.2010.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li J (2015) Molecular regulators of nerve conduction—lessons from inherited neuropathies and rodent genetic models. Exp Neurol 267:209–218. doi:10.1016/j.expneurol.2015.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu X, Fan Q, Hou H, Yan R (2015) Neurological dysfunctions associated with altered BACE1-dependent Neuregulin-1 signaling. J Neurochem. doi:10.1111/jnc.13395

    PubMed Central  Google Scholar 

  19. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM et al (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5):681–694. doi:10.1016/j.neuron.2005.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C et al (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304(5671):700–703. doi:10.1126/science.1095862

    Article  CAS  PubMed  Google Scholar 

  21. Hu X, Hu J, Dai L, Trapp B, Yan R (2015) Axonal and Schwann cell BACE1 is equally required for remyelination of peripheral nerves. J Neurosci 9:3806–3814. doi:10.1523/JNEUROSCI.5207-14.2015

    Article  CAS  Google Scholar 

  22. Stassart RM, Fledrich R, Velanac V, Brinkmann BG, Schwab MH, Meijer D, Sereda MW, Nave KA (2013) A role for Schwann cell-derived neuregulin-1 in remyelination. Nat Neurosci 16(1):48–54. doi:10.1038/nn.3281

    Article  CAS  PubMed  Google Scholar 

  23. Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB, Trapp BD, Yan R (2008) Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J 22(8):2970–2980. doi:10.1096/fj.08-106666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo X, Prior M, He W, Hu X, Tang X, Shen W, Yadav S, Kiryu-Seo S et al (2011) Cleavage of neuregulin-1 by BACE1 or ADAM10 protein produces differential effects on myelination. J Biol Chem 286(27):23967–23974. doi:10.1074/jbc.M111.251538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, Blobel CP, Quattrini A et al (2011) TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 14(7):857–865. doi:10.1038/nn.2849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fleck D, van Bebber F, Colombo A, Galante C, Schwenk BM, Rabe L, Hampel H, Novak B et al (2013) Dual cleavage of neuregulin 1 type III by BACE1 and ADAM17 liberates its EGF-like domain and allows paracrine signaling. J Neurosci 33(18):7856–7869. doi:10.1523/JNEUROSCI.3372-12.2013

    Article  CAS  PubMed  Google Scholar 

  27. Fledrich R, Stassart RM, Klink A, Rasch LM, Prukop T, Haag L, Czesnik D, Kungl T et al (2014) Soluble neuregulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med 20(9):1055–1061. doi:10.1038/nm.3664

    Article  CAS  PubMed  Google Scholar 

  28. Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N, Fageiry SK, Jenkins M et al (2011) Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci 31(9):3225–3233. doi:10.1523/JNEUROSCI.2568-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Tennekoon GI, Birnbaum M, Marchionni MA, Rutkowski JL (2001) Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 17(4):761–767. doi:10.1006/mcne.2000.0967

    Article  PubMed  CAS  Google Scholar 

  30. Wishart MJ, Taylor GS, Slama JT, Dixon JE (2001) PTEN and myotubularin phosphoinositide phosphatases: bringing bioinformatics to the lab bench. Curr Opin Cell Biol 13(2):172–181

    Article  CAS  PubMed  Google Scholar 

  31. Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T, Pieper A, Ruhwedel T, Groszer M et al (2012) Genetic disruption of PTEN in a novel mouse model of tomaculous neuropathy. EMBO Mol Med 4(6):486–499. doi:10.1002/emmm.201200227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogata T, Iijima S, Hoshikawa S, Miura T, Yamamoto S, Oda H, Nakamura K, Tanaka S (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci 24(30):6724–6732. doi:10.1523/JNEUROSCI.5520-03.2004

    Article  CAS  PubMed  Google Scholar 

  33. Tapinos N, Ohnishi M, Rambukkana A (2006) ErbB2 receptor tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli. Nat Med 12(8):961–966. doi:10.1038/nm1433

    Article  CAS  PubMed  Google Scholar 

  34. Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH, Collins MJ, Harrisingh MC et al (2012) A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73(4):729–742. doi:10.1016/j.neuron.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  35. Kao SC, Wu H, Xie J, Chang CP, Ranish JA, Graef IA, Crabtree GR (2009) Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323(5914):651–654. doi:10.1126/science.1166562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L et al (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181(4):625–637. doi:10.1083/jcb.200803013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sorkin A, Goh LK (2008) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 314(17):3093–3106. doi:10.1016/j.yexcr.2008.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miaczynska M, Pelkmans L, Zerial M (2004) Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 16(4):400–406. doi:10.1016/j.ceb.2004.06.005

    Article  CAS  PubMed  Google Scholar 

  39. Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24(1):26–34. doi:10.1016/j.tcb.2013.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roepstorff K, Grovdal L, Grandal M, Lerdrup M, van Deurs B (2008) Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 129(5):563–578. doi:10.1007/s00418-008-0401-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Polo S, Di Fiore PP (2006) Endocytosis conducts the cell signaling orchestra. Cell 124(5):897–900. doi:10.1016/j.cell.2006.02.025

    Article  CAS  PubMed  Google Scholar 

  42. Gouttenoire EA, Lupo V, Calpena E, Bartesaghi L, Schupfer F, Medard JJ, Maurer F, Beckmann JS et al (2013) Sh3tc2 deficiency affects neuregulin-1/ErbB signaling. Glia 61(7):1041–1051. doi:10.1002/glia.22493

    Article  PubMed  Google Scholar 

  43. Lee SM, Chin LS, Li L (2012) Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking. J Cell Biol 199(5):799–816. doi:10.1083/jcb.201204137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shields SB, Piper RC (2011) How ubiquitin functions with ESCRTs. Traffic 12(10):1306–1317. doi:10.1111/j.1600-0854.2011.01242.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sorkin A, Goh LK (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315(4):683–696

    Article  CAS  PubMed  Google Scholar 

  46. Cao Z, Wu X, Yen L, Sweeney C, Carraway KL 3rd (2007) Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol 27(6):2180–2188. doi:10.1128/MCB.01245-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chin LS, Lee SM, Li L (2013) SIMPLE: a new regulator of endosomal trafficking and signaling in health and disease. Commun Integr Biol 6(3), e24214. doi:10.4161/cib.24214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19(53):6102–6114. doi:10.1038/sj.onc.1203973

    Article  CAS  PubMed  Google Scholar 

  49. Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, Klumperman J, Scheller RH (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15(12):5268–5282. doi:10.1091/mbc.E04-07-0591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cullen PJ, Carlton JG (2012) Phosphoinositides in the mammalian endo-lysosomal network. Sub-cell Biochem 59:65–110. doi:10.1007/978-94-007-3015-1_3

    Article  CAS  Google Scholar 

  51. Haucke V (2005) Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 33(Pt 6):1285–1289. doi:10.1042/BST20051285

    Article  CAS  PubMed  Google Scholar 

  52. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11(5):329–341. doi:10.1038/nrm2882

    Article  CAS  PubMed  Google Scholar 

  53. Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8(5):355–368. doi:10.1038/nrm2162

    Article  CAS  PubMed  Google Scholar 

  54. Carricaburu V, Lamia KA, Lo E, Favereaux L, Payrastre B, Cantley LC, Rameh LE (2003) The phosphatidylinositol (PI)-5-phosphate 4-kinase type II enzyme controls insulin signaling by regulating PI-3,4,5-trisphosphate degradation. Proc Natl Acad Sci U S A 100(17):9867–9872. doi:10.1073/pnas.1734038100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coronas S, Ramel D, Pendaries C, Gaits-Iacovoni F, Tronchere H, Payrastre B (2007) PtdIns5P: a little phosphoinositide with big functions? Biochem Soc Sympos 74:117–128. doi:10.1042/BSS0740117

    Article  CAS  Google Scholar 

  56. Macklin WB (2010) The myelin brake: when enough is enough. Sci Signal 3(140):pe32. doi:10.1126/scisignal.3140pe32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bolino A, Levy ER, Muglia M, Conforti FL, LeGuern E, Salih MA, Georgiou DM, Christodoulou RK et al (2000) Genetic refinement and physical mapping of the CMT4B gene on chromosome 11q22. Genomics 63(2):271–278. doi:10.1006/geno.1999.6088

    Article  CAS  PubMed  Google Scholar 

  58. Senderek J, Bergmann C, Weber S, Ketelsen UP, Schorle H, Rudnik-Schoneborn S, Buttner R, Buchheim E et al (2003) Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet 12(3):349–356

    Article  CAS  PubMed  Google Scholar 

  59. Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A et al (2003) Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet 72(5):1141–1153. doi:10.1086/375034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hirano R, Takashima H, Umehara F, Arimura H, Michizono K, Okamoto Y, Nakagawa M, Boerkoel CF et al (2004) SET binding factor 2 (SBF2) mutation causes CMT4B with juvenile onset glaucoma. Neurology 63(3):577–580

    Article  CAS  PubMed  Google Scholar 

  61. Conforti FL, Muglia M, Mazzei R, Patitucci A, Valentino P, Magariello A, Sprovieri T, Bono F et al (2004) A new SBF2 mutation in a family with recessive demyelinating Charcot-Marie-Tooth (CMT4B2). Neurology 63(7):1327–1328

    Article  CAS  PubMed  Google Scholar 

  62. Nakhro K, Park JM, Hong YB, Park JH, Nam SH, Yoon BR, Yoo JH, Koo H et al (2013) SET binding factor 1 (SBF1) mutation causes Charcot-Marie-Tooth disease type 4B3. Neurology 81(2):165–173. doi:10.1212/WNL.0b013e31829a3421

    Article  CAS  PubMed  Google Scholar 

  63. Bolino A, Bolis A, Previtali SC, Dina G, Bussini S, Dati G, Amadio S, Del Carro U et al (2004) Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167(4):711–721. doi:10.1083/jcb.200407010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robinson FL, Dixon JE (2005) The phosphoinositide-3-phosphatase MTMR2 associates with MTMR13, a membrane-associated pseudophosphatase also mutated in type 4B Charcot-Marie-Tooth disease. J Biol Chem 280(36):31699–31707. doi:10.1074/jbc.M505159200

    Article  CAS  PubMed  Google Scholar 

  65. Berger P, Bonneick S, Willi S, Wymann M, Suter U (2002) Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum Mol Genet 11(13):1569–1579

    Article  CAS  PubMed  Google Scholar 

  66. Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE (2003) Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci U S A 100(8):4492–4497. doi:10.1073/pnas.0431052100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee HW, Kim Y, Han K, Kim H, Kim E (2010) The phosphoinositide 3-phosphatase MTMR2 interacts with PSD-95 and maintains excitatory synapses by modulating endosomal traffic. J Neurosci 30(16):5508–5518. doi:10.1523/JNEUROSCI.4283-09.2010

    Article  CAS  PubMed  Google Scholar 

  68. Velichkova M, Juan J, Kadandale P, Jean S, Ribeiro I, Raman V, Stefan C, Kiger AA (2010) Drosophila Mtm and class II PI3K coregulate a PI(3)P pool with cortical and endolysosomal functions. J Cell Biol 190(3):407–425. doi:10.1083/jcb.200911020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ribeiro I, Yuan L, Tanentzapf G, Dowling JJ, Kiger A (2011) Phosphoinositide regulation of integrin trafficking required for muscle attachment and maintenance. PLoS Genet 7(2), e1001295. doi:10.1371/journal.pgen.1001295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Senderek J, Bergmann C, Stendel C, Kirfel J, Verpoorten N, De Jonghe P, Timmerman V, Chrast R et al (2003) Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. Am J Hum Genet 73(5):1106–1119. doi:10.1086/379525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lupo V, Galindo MI, Martinez-Rubio D, Sevilla T, Vilchez JJ, Palau F, Espinos C (2009) Missense mutations in the SH3TC2 protein causing Charcot-Marie-Tooth disease type 4C affect its localization in the plasma membrane and endocytic pathway. Hum Mol Genet 18(23):4603–4614. doi:10.1093/hmg/ddp427

    Article  CAS  PubMed  Google Scholar 

  72. Horn M, Baumann R, Pereira JA, Sidiropoulos PN, Somandin C, Welzl H, Stendel C, Luhmann T et al (2012) Myelin is dependent on the Charcot-Marie-Tooth Type 4H disease culprit protein FRABIN/FGD4 in Schwann cells. Brain 135(Pt 12):3567–3583. doi:10.1093/brain/aws275

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jean S, Cox S, Schmidt EJ, Robinson FL, Kiger A (2012) Sbf/MTMR13 coordinates PI(3)P and Rab21 regulation in endocytic control of cellular remodeling. Mol Biol Cell 23(14):2723–2740. doi:10.1091/mbc.E12-05-0375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xhabija B, Taylor GS, Fujibayashi A, Sekiguchi K, Vacratsis PO (2011) Receptor mediated endocytosis 8 is a novel PI(3)P binding protein regulated by myotubularin-related 2. FEBS Lett 585(12):1722–1728. doi:10.1016/j.febslet.2011.04.016

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Grant B, Hirsh D (2001) RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 12(7):2011–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gomez-Lamarca M, Snowdon LA, Seib E, Klein T, Bray S (2015) Rme-8 depletion perturbs Notch recycling and predisposes to pathogenic signaling. J Cell Biol 210(3):517. doi:10.1083/jcb.20141100107172015c

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roberts RC, Peden AA, Buss F, Bright NA, Latouche M, Reilly MM, Kendrick-Jones J, Luzio JP (2010) Mistargeting of SH3TC2 away from the recycling endosome causes Charcot-Marie-Tooth disease type 4C. Hum Mol Genet 19(6):1009–1018. doi:10.1093/hmg/ddp565

    Article  CAS  PubMed  Google Scholar 

  78. Stendel C, Roos A, Kleine H, Arnaud E, Ozcelik M, Sidiropoulos PN, Zenker J, Schupfer F et al (2010) SH3TC2, a protein mutant in Charcot-Marie-Tooth neuropathy, links peripheral nerve myelination to endosomal recycling. Brain 133(Pt 8):2462–2474. doi:10.1093/brain/awq168

    Article  PubMed  Google Scholar 

  79. Lachat P, Shaw P, Gebhard S, van Belzen N, Chaubert P, Bosman FT (2002) Expression of NDRG1, a differentiation-related gene, in human tissues. Histochem Cell Biol 118(5):399–408. doi:10.1007/s00418-002-0460-9

    Article  CAS  PubMed  Google Scholar 

  80. Kachhap SK, Faith D, Qian DZ, Shabbeer S, Galloway NL, Pili R, Denmeade SR, DeMarzo AM et al (2007) The N-Myc down regulated gene1 (NDRG1) is a Rab4a effector involved in vesicular recycling of E-cadherin. PLoS ONE 2(9):e844. doi:10.1371/journal.pone.0000844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Pietiainen V, Vassilev B, Blom T, Wang W, Nelson J, Bittman R, Back N, Zelcer N et al (2013) NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. J Cell Sci 126(Pt 17):3961–3971. doi:10.1242/jcs.128132

    Article  CAS  PubMed  Google Scholar 

  82. Street VA, Bennett CL, Goldy JD, Shirk AJ, Kleopa KA, Tempel BL, Lipe HP, Scherer SS et al (2003) Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. Neurology 60(1):22–26

    Article  CAS  PubMed  Google Scholar 

  83. Bennett CL, Shirk AJ, Huynh HM, Street VA, Nelis E, Van Maldergem L, De Jonghe P, Jordanova A et al (2004) SIMPLE mutation in demyelinating neuropathy and distribution in sciatic nerve. Ann Neurol 55(5):713–720. doi:10.1002/ana.20094

    Article  CAS  PubMed  Google Scholar 

  84. Saifi GM, Szigeti K, Wiszniewski W, Shy ME, Krajewski K, Hausmanowa-Petrusewicz I, Kochanski A, Reeser S et al (2005) SIMPLE mutations in Charcot-Marie-Tooth disease and the potential role of its protein product in protein degradation. Hum Mutat 25(4):372–383. doi:10.1002/humu.20153

    Article  CAS  PubMed  Google Scholar 

  85. Street VA, Goldy JD, Golden AS, Tempel BL, Bird TD, Chance PF (2002) Mapping of Charcot-Marie-Tooth disease type 1C to chromosome 16p identifies a novel locus for demyelinating neuropathies. Am J Hum Genet 70(1):244–250. doi:10.1086/337943

    Article  CAS  PubMed  Google Scholar 

  86. Myokai F, Takashiba S, Lebo R, Amar S (1999) A novel lipopolysaccharide-induced transcription factor regulating tumor necrosis factor alpha gene expression: molecular cloning, sequencing, characterization, and chromosomal assignment. Proc Natl Acad Sci U S A 96(8):4518–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Moriwaki Y, Begum NA, Kobayashi M, Matsumoto M, Toyoshima K, Seya T (2001) Mycobacterium bovis Bacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene, LITAF(PIG7), and estrogen-inducible gene, EET-1. J Biol Chem 276(25):23065–23076. doi:10.1074/jbc.M011660200

    Article  CAS  PubMed  Google Scholar 

  88. Watson JA, Bhattacharyya BJ, Vaden JH, Wilson JA, Icyuz M, Howard AD, Phillips E, DeSilva TM et al (2015) Motor and sensory deficits in the teetering mice result from mutation of the ESCRT component HGS. PLoS Genet 11(6), e1005290. doi:10.1371/journal.pgen.1005290

    Article  PubMed  PubMed Central  Google Scholar 

  89. Meier H (1967) The neuropathy of teetering, a neurological mutation in the mouse. Arch Neurol 16(1):59–66

    Article  CAS  PubMed  Google Scholar 

  90. Franklin NE, Taylor GS, Vacratsis PO (2011) Endosomal targeting of the phosphoinositide 3-phosphatase MTMR2 is regulated by an N-terminal phosphorylation site. J Biol Chem 286(18):15841–15853. doi:10.1074/jbc.M110.209122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19(8):3334–3346. doi:10.1091/mbc.E08-04-0367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fujibayashi A, Taguchi T, Misaki R, Ohtani M, Dohmae N, Takio K, Yamada M, Gu J et al (2008) Human RME-8 is involved in membrane trafficking through early endosomes. Cell Struct Funct 33(1):35–50

    Article  CAS  PubMed  Google Scholar 

  93. Girard M, McPherson PS (2008) RME-8 regulates trafficking of the epidermal growth factor receptor. FEBS Lett 582(6):961–966. doi:10.1016/j.febslet.2008.02.042

    Article  CAS  PubMed  Google Scholar 

  94. Girard M, Poupon V, Blondeau F, McPherson PS (2005) The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 280(48):40135–40143. doi:10.1074/jbc.M505036200

    Article  CAS  PubMed  Google Scholar 

  95. Nicholson G, Lenk GM, Reddel SW, Grant AE, Towne CF, Ferguson CJ, Simpson E, Scheuerle A et al (2011) Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P(2) phosphatase FIG 4. Brain 134(Pt 7):1959–1971. doi:10.1093/brain/awr148

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ et al (2011) Pathogenic mechanism of the FIG 4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet 7(6):e1002104. doi:10.1371/journal.pgen.1002104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME et al (2007) Mutation of FIG 4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448(7149):68–72. doi:10.1038/nature05876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee SM, Sha D, Mohammed AA, Asress S, Glass JD, Chin LS, Li L (2013) Motor and sensory neuropathy due to myelin infolding and paranodal damage in a transgenic mouse model of Charcot-Marie-Tooth disease type 1C. Hum Mol Genet 22(9):1755–1770. doi:10.1093/hmg/ddt022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seto ES, Bellen HJ, Lloyd TE (2002) When cell biology meets development: endocytic regulation of signaling pathways. Genes Dev 16(11):1314–1336. doi:10.1101/gad.989602

    Article  CAS  PubMed  Google Scholar 

  100. Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P, Kim HA (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30(17):6122–6131. doi:10.1523/JNEUROSCI.1681-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Quintes S, Goebbels S, Saher G, Schwab MH, Nave KA (2010) Neuron-glia signaling and the protection of axon function by Schwann cells. J Peripher Nerv Syst 15(1):10–16. doi:10.1111/j.1529-8027.2010.00247.x

    Article  CAS  PubMed  Google Scholar 

  102. Arnaud E, Zenker J, de Preux Charles AS, Stendel C, Roos A, Medard JJ, Tricaud N, Kleine H et al (2009) SH3TC2/KIAA1985 protein is required for proper myelination and the integrity of the node of Ranvier in the peripheral nervous system. Proc Natl Acad Sci U S A 106(41):17528–17533. doi:10.1073/pnas.0905523106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ionasescu VV, Ionasescu R, Searby C, Barker DF (1993) Charcot-Marie-Tooth neuropathy type 1A with both duplication and non-duplication. Hum Mol Genet 2(4):405–410

    Article  CAS  PubMed  Google Scholar 

  104. Wise CA, Garcia CA, Davis SN, Heju Z, Pentao L, Patel PI, Lupski JR (1993) Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMTIA duplication. Am J Hum Genet 53(4):853–863

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Li J, Parker B, Martyn C, Natarajan C, Guo J (2013) The PMP22 gene and its related diseases. Mol Neurobiol 47(2):673–698. doi:10.1007/s12035-012-8370-x

    Article  CAS  PubMed  Google Scholar 

  106. Massa R, Palumbo C, Cavallaro T, Panico MB, Bei R, Terracciano C, Rizzuto N, Bernardi G et al (2006) Overexpression of ErbB2 and ErbB3 receptors in Schwann cells of patients with Charcot-Marie-tooth disease type 1A. Muscle Nerve 33(3):342–349. doi:10.1002/mus.20460

    Article  CAS  PubMed  Google Scholar 

  107. Kohl B, Fischer S, Groh J, Wessig C, Martini R (2010) MCP-1/CCL2 modifies axon properties in a PMP22-overexpressing mouse model for Charcot-Marie-tooth 1A neuropathy. Am J Pathol 176(3):1390–1399. doi:10.2353/ajpath.2010.090694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Murphy SM, Polke J, Manji H, Blake J, Reiniger L, Sweeney M, Houlden H, Brandner S et al (2011) A novel mutation in the nerve-specific 5'UTR of the GJB1 gene causes X-linked Charcot-Marie-Tooth disease. J Peripher Nerv Syst 16(1):65–70. doi:10.1111/j.1529-8027.2011.00321.x

    Article  CAS  PubMed  Google Scholar 

  109. Kleopa KA, Zamba-Papanicolaou E, Alevra X, Nicolaou P, Georgiou DM, Hadjisavvas A, Kyriakides T, Christodoulou K (2006) Phenotypic and cellular expression of two novel connexin32 mutations causing CMT1X. Neurology 66(3):396–402. doi:10.1212/01.wnl.0000196479.93722.59

    Article  CAS  PubMed  Google Scholar 

  110. Kleopa KA (2011) The role of gap junctions in Charcot-Marie-Tooth disease. J Neurosci 31(49):17753–17760. doi:10.1523/JNEUROSCI.4824-11.2011

    Article  CAS  PubMed  Google Scholar 

  111. Kleopa KA, Abrams CK, Scherer SS (2012) How do mutations in GJB1 cause X-linked Charcot-Marie-Tooth disease? Brain Res 1487:198–205. doi:10.1016/j.brainres.2012.03.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Groh J, Heinl K, Kohl B, Wessig C, Greeske J, Fischer S, Martini R (2010) Attenuation of MCP-1/CCL2 expression ameliorates neuropathy in a mouse model for Charcot-Marie-Tooth 1X. Hum Mol Genet 19(18):3530–3543. doi:10.1093/hmg/ddq269

    Article  CAS  PubMed  Google Scholar 

  113. Berger P, Tersar K, Ballmer-Hofer K, Suter U (2011) The CMT4B disease-causing proteins MTMR2 and MTMR13/SBF2 regulate AKT signalling. J Cell Mol Med 15(2):307–315. doi:10.1111/j.1582-4934.2009.00967.x

    Article  CAS  PubMed  Google Scholar 

  114. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657. doi:10.1038/nature05185

    Article  PubMed  CAS  Google Scholar 

  115. Vaccari I, Dina G, Tronchere H, Kaufman E, Chicanne G, Cerri F, Wrabetz L, Payrastre B et al (2011) Genetic interaction between MTMR2 and FIG 4 phospholipid phosphatases involved in Charcot-Marie-Tooth neuropathies. PLoS Genet 7(10):e1002319. doi:10.1371/journal.pgen.1002319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kovacevic Z, Chikhani S, Lui GY, Sivagurunathan S, Richardson DR (2013) The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. Antioxid Redox Signal 18(8):874–887. doi:10.1089/ars.2011.4273

    Article  CAS  PubMed  Google Scholar 

  117. Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I, Chouery E, Chaouch M et al (2007) Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 81(1):1–16. doi:10.1086/518428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Baudot C, Esteve C, Castro C, Poitelon Y, Mas C, Hamadouche T, El-Rajab M, Levy N et al (2012) Two novel missense mutations in FGD4/FRABIN cause Charcot-Marie-Tooth type 4H (CMT4H). J Peripher Nerv Syst 17(2):141–146. doi:10.1111/j.1529-8027.2012.00405.x

    Article  CAS  PubMed  Google Scholar 

  119. Boubaker C, Hsairi-Guidara I, Castro C, Ayadi I, Boyer A, Kerkeni E, Courageot J, Abid I et al (2013) A novel mutation in FGD4/FRABIN causes Charcot Marie Tooth disease type 4H in patients from a consanguineous Tunisian family. Ann Hum Genet 77(4):336–343. doi:10.1111/ahg.12017

    PubMed  Google Scholar 

  120. Mei L, Nave KA (2014) Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83(1):27–49. doi:10.1016/j.neuron.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hartmann F, Horak EM, Cho C, Lupu R, Bolen JB, Stetler-Stevenson MA, Pfreundschuh M, Waldmann TA et al (1997) Effects of the tyrosine-kinase inhibitor geldanamycin on ligand-induced Her-2/Neu activation, receptor expression and proliferation of Her-2-positive malignant cell lines. Int J Cancer 70(2):221–229

    Article  CAS  PubMed  Google Scholar 

  122. Belleudi F, Marra E, Mazzetta F, Fattore L, Giovagnoli MR, Mancini R, Aurisicchio L, Torrisi MR et al (2012) Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells. Cell Cycle 11(7):1455–1467. doi:10.4161/cc.19861

    Article  CAS  PubMed  Google Scholar 

  123. Sak MM, Szymanska M, Bertelsen V, Hasmann M, Madshus IH, Stang E (2013) Pertuzumab counteracts the inhibitory effect of ErbB2 on degradation of ErbB3. Carcinogenesis 34(9):2031–2038. doi:10.1093/carcin/bgt173

    Article  CAS  PubMed  Google Scholar 

  124. Aurisicchio L, Marra E, Roscilli G, Mancini R, Ciliberto G (2012) The promise of anti-ErbB3 monoclonals as new cancer therapeutics. Oncotarget 3(8):744–758

    Article  PubMed  PubMed Central  Google Scholar 

  125. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nature reviews Drug Discov 8(8):627–644. doi:10.1038/nrd2926

    Article  CAS  Google Scholar 

  126. Liao J, Marumoto T, Yamaguchi S, Okano S, Takeda N, Sakamoto C, Kawano H, Nii T et al (2013) Inhibition of PTEN tumor suppressor promotes the generation of induced pluripotent stem cells. Mol Ther 21(6):1242–1250. doi:10.1038/mt.2013.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dillon LM, Miller TW (2014) Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets 15(1):65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Robinson FL, Niesman IR, Beiswenger KK, Dixon JE (2008) Loss of the inactive myotubularin-related phosphatase Mtmr13 leads to a Charcot-Marie-Tooth 4B2-like peripheral neuropathy in mice. Proc Natl Acad Sci U S A 105(12):4916–4921. doi:10.1073/pnas.0800742105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by National Institutions of Health (NIH) grants NS063501 (S.M.L.), NS093550 (L.S.C.), GM103613, and NS092343 (L.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.M., Chin, LS. & Li, L. Dysregulation of ErbB Receptor Trafficking and Signaling in Demyelinating Charcot-Marie-Tooth Disease. Mol Neurobiol 54, 87–100 (2017). https://doi.org/10.1007/s12035-015-9668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9668-2

Keywords

Navigation