Skip to main content

Phosphoinositides in the Mammalian Endo-lysosomal Network

  • Chapter
  • First Online:
Phosphoinositides II: The Diverse Biological Functions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 59))

Abstract

The endo-lysosomal system is an interconnected tubulo-vesicular network that acts as a sorting station to process and distribute internalised cargo. This network accepts cargoes from both the plasma membrane and the biosynthetic pathway, and directs these cargos either towards the lysosome for degradation, the peri-nuclear recycling endosome for return to the cell surface, or to the trans-Golgi network. These intracellular membranes are variously enriched in different phosphoinositides that help to shape compartmental identity. These lipids act to localise a number of phosphoinositide-binding proteins that function as sorting machineries to regulate endosomal cargo sorting. Herein we discuss regulation of these machineries by phosphoinositides and explore how phosphoinositide-switching contributes toward sorting decisions made at this platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe N, Inoue T, Galvez T, Klein L, Meyer T (2008) Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor. J Cell Sci 121:1488–1494

    Article  PubMed  CAS  Google Scholar 

  • Adachi H, Tsujimoto M (2010) Adaptor protein sorting nexin 17 interacts with the scavenger receptor FEEL-1/stabilin-1 and modulates its expression on the cell surface. Biochim Biophys Acta 1803:553–563

    Article  PubMed  CAS  Google Scholar 

  • Alam SL, Langelier C, Whitby FG, Koirala S, Robinson H, Hill CP, Sundquist WI (2006) Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nat Struct Mol Biol 13:1029–1030

    Article  PubMed  CAS  Google Scholar 

  • Ang AL, Taguchi T, Francis S, Folsch H, Murrells LJ, Pypaert M, Warren G, Mellman I (2004) Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 167:531–543

    Article  PubMed  CAS  Google Scholar 

  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165:123–133

    Article  PubMed  CAS  Google Scholar 

  • Attar N, Cullen PJ (2010) The retromer complex. Adv Enzyme Regul 50:216–236

    Article  PubMed  Google Scholar 

  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    Article  PubMed  CAS  Google Scholar 

  • Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002a) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  CAS  Google Scholar 

  • Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (2002b) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289

    Article  CAS  Google Scholar 

  • Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17

    Article  PubMed  CAS  Google Scholar 

  • Balla T (2005) Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 118:2093–2104

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361

    Article  PubMed  CAS  Google Scholar 

  • Balla T, Várnai P (2009) Visualization of cellular phosphoinositide pools with GFP-fused protein-domains. Wiley, New York

    Google Scholar 

  • Bankaitis VA, Johnson LM, Emr SD (1986) Isolation of yeast mutants defective in protein targeting to the vacuole. Proc Natl Acad Sci U S A 83:9075–9079

    Article  PubMed  CAS  Google Scholar 

  • Bashkirov PV, Akimov SA, Evseev AI, Schmid SL, Zimmerberg J, Frolov VA (2008) GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135:1276–1286

    Article  PubMed  CAS  Google Scholar 

  • Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 14:120–131

    Article  PubMed  CAS  Google Scholar 

  • Blume JJ, Halbach A, Behrendt D, Paulsson M, Plomann M (2007) EHD proteins are associated with tubular and vesicular compartments and interact with specific phospholipids. Exp Cell Res 313:219–231

    Article  PubMed  CAS  Google Scholar 

  • Bonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS (2002) Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156:1015–1028

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Hurley JH (2008) Retromer. Curr Opin Cell Biol 20:427–436

    Article  PubMed  CAS  Google Scholar 

  • Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7:568–579

    Article  PubMed  CAS  Google Scholar 

  • Botelho RJ (2009) Changing phosphoinositides “on the fly”: how trafficking vesicles avoid an identity crisis. BioEssays 31:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Botelho RJ, Efe JA, Teis D, Emr SD (2008) Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19:4273–4286

    Article  PubMed  CAS  Google Scholar 

  • Braschi E, Goyon V, Zunino R, Mohanty A, Xu L, McBride HM (2010) Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol 20:1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG (2001) Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 154:1007–1017

    Article  PubMed  CAS  Google Scholar 

  • Bruce EA, Medcalf L, Crump CM, Noton SL, Stuart AD, Wise HM, Elton D, Bowers K, Digard P (2009) Budding of filamentous and non-filamentous influenza A virus occurs via a VPS4 and VPS28-independent pathway. Virology 390:268–278

    Article  PubMed  CAS  Google Scholar 

  • Bujny MV, Popoff V, Johannes L, Cullen PJ (2007) The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 120:2010–2021

    Article  PubMed  CAS  Google Scholar 

  • Burd CG, Emr SD (1998) Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2:157–162

    Article  PubMed  CAS  Google Scholar 

  • Burda P, Padilla SM, Sarkar S, Emr SD (2002) Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 115:3889–3900

    Article  PubMed  CAS  Google Scholar 

  • Burden JJ, Sun XM, Garcia AB, Soutar AK (2004) Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J Biol Chem 279:16237–16245

    Article  PubMed  CAS  Google Scholar 

  • Cabezas A, Pattni K, Stenmark H (2006) Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. Gene 371:34–41

    Article  PubMed  CAS  Google Scholar 

  • Cai H, Yu S, Menon S, Cai Y, Lazarova D, Fu C, Reinisch K, Hay JC, Ferro-Novick S (2007) TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445:941–944

    Article  PubMed  CAS  Google Scholar 

  • Cao C, Laporte J, Backer JM, Wandinger-Ness A, Stein MP (2007) Myotubularin lipid phosphatase binds the hVPS15/hVPS34 lipid kinase complex on endosomes. Traffic 8:1052–10567

    Article  PubMed  CAS  Google Scholar 

  • Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19:3334–3346

    Article  PubMed  CAS  Google Scholar 

  • Caplan S, Naslavsky N, Hartnell LM, Lodge R, Polishchuk RS, Donaldson JG, Bonifacino JS (2002) A tubular EHD1-containing compartment involved in the recycling of major histocompatibility complex class I molecules to the plasma membrane. EMBO J 21:2557–2567

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG (2010) The ESCRT machinery—a cellular complex for sorting and scission. Biochem Soc Trans 38:1397–1412

    Google Scholar 

  • Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Martin-Serrano J (2009) The ESCRT machinery: new functions in viral and cellular biology. Biochem Soc Trans 37:195–199

    Article  PubMed  CAS  Google Scholar 

  • Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol 14:1791–1800

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Bujny MV, Peter BJ, Oorschot VM, Rutherford A, Arkell RS, Klumperman J, McMahon HT, Cullen PJ (2005) Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci 118:4527–4539

    Article  PubMed  CAS  Google Scholar 

  • Carlton JG, Agromayor M, Martin-Serrano J (2008) Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci U S A 105:10541–10546

    Article  PubMed  CAS  Google Scholar 

  • Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW, Holmes AB (2008) The PI(3,5)P2 and PI(4,5)P2 interactomes. J Proteome Res 7:5295–5313

    Article  PubMed  CAS  Google Scholar 

  • Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Ann Rev Pathol Mech Dis 4:127–150

    Article  CAS  Google Scholar 

  • Chen D, Xiao H, Zhang K, Wang B, Gao Z, Jian Y, Qi X, Sun J, MIAO L, Yang C (2010) Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327:1261–1264

    Article  PubMed  CAS  Google Scholar 

  • Chin LS, Raynor MC, Wei X, Chen HQ, Li L (2001) Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 276:7069–7078

    Article  PubMed  CAS  Google Scholar 

  • Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    Article  PubMed  CAS  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    Article  PubMed  CAS  Google Scholar 

  • Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH (2009) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88

    Article  PubMed  CAS  Google Scholar 

  • Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, Yip SC, Waterfield MD, Backer JM, Zerial M (1999) Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat Cell Biol 1:249–252

    Article  PubMed  CAS  Google Scholar 

  • Chukkapalli V, Hogue IB, Boyko V, Hu WS, Ono A (2008) Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding. J Virol 82:2405–2417

    Article  PubMed  CAS  Google Scholar 

  • Collins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ (2005) Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat Struct Mol Biol 12:594–602

    Article  PubMed  CAS  Google Scholar 

  • Collins BM, Norwood SJ, Kerr MC, Mahony D, Seaman MN, Teasdale RD, Owen DJ (2008) Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9:366–379

    Article  PubMed  CAS  Google Scholar 

  • Cooke FT (2009) Measurement of polyphosphoinositides in cultured mammalian cells. Methods Mol Biol 462:43–58

    Article  PubMed  CAS  Google Scholar 

  • Cozier GE, Carlton J, McGregor AH, Gleeson PA, Teasdale RD, Mellor H, Cullen PJ (2002) The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J Biol Chem 277:48730–48736

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ (2008) Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 9:574–582

    Article  PubMed  CAS  Google Scholar 

  • Cullen PJ, Cozier GE, Banting G, Mellor H (2001) Modular phosphoinositide-binding domains—their role in signalling and membrane trafficking. Curr Biol 11:R882--R893

    Article  PubMed  CAS  Google Scholar 

  • D’angelo G, Vicinanza M, Di Campli A, De Matteis MA (2008) The multiple roles of PtdIns(4)P—not just the precursor of PtdIns(4,5)P2. J Cell Sci 121:1955–1963

    Article  PubMed  CAS  Google Scholar 

  • Dacks JB, Peden AA, Field MC (2009) Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 41:330–340

    Article  PubMed  CAS  Google Scholar 

  • Damen E, Krieger E, Nielsen JE, Eygensteyn J, Van Leeuwen JE (2006) The human Vps29 retromer component is a metallo-phosphoesterase for a cation-independent mannose 6-phosphate receptor substrate peptide. Biochem J 398:399–409

    Article  PubMed  CAS  Google Scholar 

  • Daumke O, Lundmark R, Vallis Y, Martens S, Butler PJ, McMahon H T (2007) Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449:923–927

    Article  PubMed  CAS  Google Scholar 

  • Lartigue J de, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S, Clague MJ (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10:883–893

    Article  PubMed  CAS  Google Scholar 

  • De Matteis MA, Di Campli A, Godi A (2005) The role of the phosphoinositides at the Golgi complex. Biochim Biophys Acta 1744:396–405

    Article  PubMed  CAS  Google Scholar 

  • Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A (2009) The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev Cell 17:712–723

    Article  PubMed  CAS  Google Scholar 

  • Diaz E, Schimmoller F, Pfeffer SR (1997) A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol 138:283–290

    Article  PubMed  CAS  Google Scholar 

  • Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun 1:38. doi:10.1038/ncomms1037

    Google Scholar 

  • Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–192

    Article  PubMed  CAS  Google Scholar 

  • Dove SK, McEwen RK, Mayes A, Hughes DC, Beggs JD, Michell RH (2002) Vac14 controls PtdIns(3,5)P2 synthesis and Fab1-dependent protein trafficking to the multivesicular body. Curr Biol 12:885–893

    Article  PubMed  CAS  Google Scholar 

  • Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J 23:1922–1933

    Article  PubMed  CAS  Google Scholar 

  • Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006) Phosphoinositide 5-phosphatase Fig4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5:723–731

    Article  PubMed  CAS  Google Scholar 

  • Dyve AB, Bergan J, Utskarpen A, Sandvig K (2009) Sorting nexin 8 regulates endosome-to-Golgi transport. Biochem Biophys Res Commun 390:109–114

    Article  PubMed  CAS  Google Scholar 

  • Edgar AJ, Polak JM (2000) Human homologues of yeast vacuolar protein sorting 29 and 35. Biochem Biophys Res Commun 277:622–630

    Article  PubMed  CAS  Google Scholar 

  • Erdmann KS, Mao Y, McErea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P (2007) A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13:377–390

    Article  PubMed  CAS  Google Scholar 

  • Esk C, Chen CY, Johannes L, Brodsky FM (2010) The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. J Cell Biol 188:131–144

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O, E O T, De Camilli P (2009) Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 17:811–822

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Borja M, Wubbolts R, Calafat J, Janssen H, Divecha N, Dusseljee S, Neefjes J (1999) Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr Biol 9:55–58

    Article  PubMed  CAS  Google Scholar 

  • Florian V, Schluter T, Bohnensack R (2001) A new member of the sorting nexin family interacts with the C-terminus of P-selectin. Biochem Biophys Res Commun 281:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Folsch H, Pypaert M, Schu P, Mellman I (2001) Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol 152:595–606

    Article  PubMed  CAS  Google Scholar 

  • Fotin A, Cheng Y, Grigorieff N, Walz T, Harrison SC, Kirchhausen T (2004) Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432:649–653

    Article  PubMed  CAS  Google Scholar 

  • Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice MM, Vincent JP (2008) Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Frost A, Perera R, Roux A, Spasov K, Destaing O, Egelman EH, De Camilli P, Unger VM (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132:807–817

    Article  PubMed  CAS  Google Scholar 

  • Frost A, Unger VM, De Camilli P (2009) The BAR domain superfamily: membrane-molding macromolecules. Cell 137:191–196

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama K, Kajii Y, Hiraoka S, Nishikawa T (2003) Differential regulation by stimulants of neocortical expression of mrt1, arc, and homer1a mRNA in the rats treated with repeated methamphetamine. Synapse 49:143–149

    Article  PubMed  CAS  Google Scholar 

  • Futter CE, Collinson LM, Backer JM, Hopkins CR (2001) Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol 155:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251

    Article  PubMed  CAS  Google Scholar 

  • Gill DJ, Teo H, Sun J, Perisic O, Veprintsev DB, Emr SD, Williams RL (2007) Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J 26:600–612

    Article  PubMed  CAS  Google Scholar 

  • Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier J-M, Parton RG, Stenmark H (2000a) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    Article  CAS  Google Scholar 

  • Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, Stenmark H (2000b) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    Article  CAS  Google Scholar 

  • Gillooly DJ, Raiborg C, Stenmark H (2003) Phosphatidylinositol 3-phosphate is found in microdomains of early endosomes. Histochem Cell Biol 120:445–453

    Article  PubMed  CAS  Google Scholar 

  • Gokool S, Tattersall D, Seaman MN (2007) EHD1 interacts with retromer to stabilize SNX1 tubules and facilitate endosome-to-Golgi retrieval. Traffic 8:1873–1886

    Article  PubMed  CAS  Google Scholar 

  • Gomez TS, Billadeau DD (2009) A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 17:699–711

    Article  PubMed  CAS  Google Scholar 

  • Grant BD, Caplan S (2008) Mechanisms of EHD/RME-1 protein function in endocytic transport. Traffic 9:2043–2052

    Article  PubMed  CAS  Google Scholar 

  • Grant BD, Donaldson JG (2009) Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10:597–608

    Article  PubMed  CAS  Google Scholar 

  • Grant B, Zhang Y, Paupard MC, Lin SX, Hall DH, Hirsh D (2001) Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol 3:573–579

    Article  PubMed  CAS  Google Scholar 

  • Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323

    Article  PubMed  CAS  Google Scholar 

  • Gruenberg J, Goot FG Van der (2006) Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7:495–504

    Article  PubMed  CAS  Google Scholar 

  • Gullapalli A, Wolfe BL, Griffin CT, Magnuson T, Trejo J (2006) An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol Biol Cell 17:1228–1238

    Article  PubMed  CAS  Google Scholar 

  • Haberg K, Lundmark R, Carlsson SR (2008) SNX18 is an SNX9 paralog that acts as a membrane tubulator in AP-1-positive endosomal trafficking. J Cell Sci 121:1495–1505

    Article  PubMed  CAS  Google Scholar 

  • Haffner C, Di Paolo G, Rosenthal JA, De Camilli P (2000) Direct interaction of the 170 kDa isoform of synaptojanin 1 with clathrin and with the clathrin adaptor AP-2. Curr Biol 10:471–474

    Article  PubMed  CAS  Google Scholar 

  • Haft CR, De la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI (2000) Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11:4105–4116

    PubMed  CAS  Google Scholar 

  • Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J 422:23–35

    Article  PubMed  CAS  Google Scholar 

  • Hanson PI, Roth R, Lin Y, Heuser JE (2008) Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 180:389–402

    Article  PubMed  CAS  Google Scholar 

  • Harbour ME, Breusegem SY, Antrobus R, Freeman C, Reid E, Seaman MN (2010) The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J Cell Sci 123:3703–3717

    Google Scholar 

  • Haucke V (2005) Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem Soc Trans 33:1285–1289

    Article  PubMed  CAS  Google Scholar 

  • He X, Li F, Chang WP, Tang J (2005) GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 280:11696–11703

    Article  PubMed  CAS  Google Scholar 

  • Heller B, Adu-Gyamfi E, Smith-Kinnaman W, Babbey C, Vora M, Xue Y, Bittman R, Stahelin RV, Wells CD (2010) Amot recognizes a juxtanuclear endocytic recycling compartment via a novel lipid binding domain. J Biol Chem 285:12308–12320

    Article  PubMed  CAS  Google Scholar 

  • Henne WM, Kent HM, Ford MG, Hegde BG, Daumke O, Butler PJ, Mittal R, Langen R, Evans PR, McMahon HT (2007) Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15:839–852

    Article  PubMed  CAS  Google Scholar 

  • Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R, McMahon HT (2010) FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328:1281–1284

    Article  PubMed  CAS  Google Scholar 

  • Hettema EH, Lewis MJ, Black MW, Pelham HR (2003) Retromer and the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast endosomes. EMBO J 22:548–557

    Article  PubMed  CAS  Google Scholar 

  • Heydorn A, Sondergaard BP, Ersboll B, Holst B, Nielsen FC, Haft CR, Whistler J, Schwartz TW (2004) A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J Biol Chem 279:54291–54303

    Article  PubMed  CAS  Google Scholar 

  • Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH (2007) Functional architecture of the retromer cargo-recognition complex. Nature 449:1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374:190–192

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Suzuki N, Slagsvold T, Kawasaki M, Trambaiolo D, Kato R, Stenmark H, Wakatsuki S (2006) Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nat Struct Mol Biol 13:1031–1032

    Article  PubMed  CAS  Google Scholar 

  • Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A, Gillooly D, Stenmark H, Zerial M (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121:437–450

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Yang Y, Zhang C, Niu Y, Li K, Zhao X, Liu JJ (2009) The retromer component SNX6 interacts with dynactin p150(Glued) and mediates endosome-to-TGN transport. Cell Res 19:1334–1349

    Article  PubMed  CAS  Google Scholar 

  • Hsu VW, Prekeris R (2010) Transport at the recycling endosome. Curr Opin Cell Biol 22:528–534

    Article  PubMed  CAS  Google Scholar 

  • Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11:556–566

    Article  PubMed  CAS  Google Scholar 

  • Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M (2006) Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J 25:3750–3761

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2006) Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291:C393--C404

    Article  PubMed  CAS  Google Scholar 

  • Im YJ, Hurley JH (2008) Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev Cell 14:902–913

    Article  PubMed  CAS  Google Scholar 

  • Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC, Collins BM, Honing S, Evans PR, Owen DJ (2010) A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141:1220–1229

    Article  PubMed  CAS  Google Scholar 

  • Jefferies HB, Cooke FT, Jat P, Boucheron C, Koizumi T, Hayakawa M, Kaizawa H, Ohishi T, Workman P, Waterfield MD, Parker PJ (2008) A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9:164–170

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TR, Dove SK, Michell RH, Parker PJ (2004) PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol Biol Cell 15:2652–2663

    Article  PubMed  CAS  Google Scholar 

  • Jha A, Agostinelli NR, Mishra SK, Keyel PA, Hawryluk MJ, Traub LM (2004) A Novel AP-2 adaptor interaction motif initially identified in the long-splice isoform of synaptojanin 1, SJ170. J Biol Chem 279:2281–2290

    Article  PubMed  CAS  Google Scholar 

  • Jia D, Gomez TS, Metlagel Z, Umetani J, Otwinowski Z, Rosen MK, Billadeau DD (2010) WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci U S A 107:10442–10447

    Article  PubMed  CAS  Google Scholar 

  • Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse. EMBO J 27:3221–3234

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Popoff, V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Romer W (2010) Shiga toxins [mdash] from cell biology to biomedical applications. Nat Rev Micro 8:105–116

    CAS  Google Scholar 

  • Joly M, Kazlauskas A, Corvera S (1995) Phosphatidylinositol 3-kinase activity is required at a postendocytic step in platelet-derived growth factor receptor trafficking. J Biol Chem 270:13225–13230

    Article  PubMed  CAS  Google Scholar 

  • Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL (1998) Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol 8:1399–1404

    Article  PubMed  CAS  Google Scholar 

  • Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J (2004) New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. J Cell Sci 117:5367–5379

    Article  PubMed  CAS  Google Scholar 

  • Jovic M, Kieken F, Naslavsky N, Sorgen PL, Caplan S (2009) Eps15 homology domain 1-associated tubules contain phosphatidylinositol-4-phosphate and phosphatidylinositol-(4,5)-bisphosphate and are required for efficient recycling. Mol Biol Cell 20:2731–2743

    Article  PubMed  CAS  Google Scholar 

  • Kajii Y, Muraoka S, Hiraoka S, Fujiyama K, Umino A, Nishikawa T (2003) A developmentally regulated and psychostimulant-inducible novel rat gene mrt1 encoding PDZ-PX proteins isolated in the neocortex. Mol Psychiatry 8:434–444

    Article  PubMed  CAS  Google Scholar 

  • Kale SD, Gu B, Capelluto DG, Dou D, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W, Tyler BM (2010) External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–295

    Article  PubMed  CAS  Google Scholar 

  • Karathanassis D, Stahelin RV, Bravo J, Perisic O, Pacold CM, Cho W, Williams RL (2002) Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J 21:5057–5068

    Article  PubMed  CAS  Google Scholar 

  • Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155

    Article  PubMed  CAS  Google Scholar 

  • Kerr MC, Bennetts JS, Simpson F, Thomas EC, Flegg C, Gleeson PA, Wicking C, Teasdale RD (2005) A novel mammalian retromer component, Vps26B. Traffic 6:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kim H, Chang B, Ahn N, Hwang S, Di PAOLO G, Chang S (2006) Regulation of transferrin recycling kinetics by PtdIns[4,5]P2 availability. FASEB J 20:2399–2401

    Article  PubMed  CAS  Google Scholar 

  • Klein DE, Lee A, Frank DW, Marks MS, Lemmon MA (1998) The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem 273:27725–27733

    Article  PubMed  CAS  Google Scholar 

  • Knauth P, Schluter T, Czubayko M, Kirsch C, Florian V, Schreckenberger S, Hahn H, Bohnensack R (2005) Functions of sorting nexin 17 domains and recognition motif for P-selectin trafficking. J Mol Biol 347:813–825

    Article  PubMed  CAS  Google Scholar 

  • Kostelansky MS, Sun J, Lee S, Kim J, Ghirlando R, Hierro A, Emr SD, Hurley JH (2006) Structural and functional organization of the ESCRT-I trafficking complex. Cell 125:113–126

    Article  PubMed  CAS  Google Scholar 

  • Kostelansky MS, Schluter C, Tam YY, Lee S, Ghirlando R, Beach B, Conibear E, Hurley JH (2007) Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129:485–498

    Article  PubMed  CAS  Google Scholar 

  • Krauss M, Kukhtina V, Pechstein A, Haucke V (2006) Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2μ-cargo complexes. Proc Natl Acad Sci 103:11934–11939

    Article  PubMed  CAS  Google Scholar 

  • Kurten RC, Cadena DL, Gill GN (1996) Enhanced degradation of egf receptors by a sorting nexin, SNX1. Science 272:1008–1010

    Article  PubMed  CAS  Google Scholar 

  • Kutateladze TG, Ogburn KD, Watson WT, De Beer T, Emr SD, Burd CG, Overduin M (1999) Phosphatidylinositol 3-phosphate recognition by the FYVE domain. Mol Cell 3:805–811

    Article  PubMed  CAS  Google Scholar 

  • Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T, Von Zastrow M (2010) SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J Cell Biol 190:565–574

    Article  PubMed  CAS  Google Scholar 

  • Lauvrak SU, Torgersen ML, Sandvig K (2004) Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J Cell Sci 117:2321–2331

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Retamal C, Cuitino L, Caruano-Yzermans A, Shin JE, Van Kerkhof P, Marzolo MP, Bu G (2008) Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem 283:11501–11508

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  PubMed  CAS  Google Scholar 

  • Lin SX, Grant B, Hirsh D, Maxfield FR (2001) Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nat Cell Biol 3:567–572

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Bankaitis VA (2010) Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res 49:201–217

    Article  PubMed  CAS  Google Scholar 

  • Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, Danuser G, Schmid SL (2009) Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol 7:e1000057

    Article  CAS  Google Scholar 

  • Lombardi D, Soldati T, Riederer MA, Goda Y, Zerial M, Pfeffer SR (1993) Rab9 functions in transport between late endosomes and the trans Golgi network. EMBO J 12:677–682

    PubMed  CAS  Google Scholar 

  • Lundmark R, Carlsson SR (2003) Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J Biol Chem 278:46772–46781

    Article  PubMed  CAS  Google Scholar 

  • Lundmark R, Carlsson SR (2004) Regulated membrane recruitment of dynamin-2 mediated by sorting nexin 9. J Biol Chem 279:42694–42702

    Article  PubMed  CAS  Google Scholar 

  • Lundmark R, Carlsson SR (2009) SNX9—a prelude to vesicle release. J Cell Sci 122:5–11

    Article  PubMed  CAS  Google Scholar 

  • Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates JR 3RD, Slesinger PA (2007) A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci 10:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Maffucci T, Brancaccio A, Piccolo E, Stein RC, Falasca M (2003) Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J 22:4178–4189

    Article  PubMed  CAS  Google Scholar 

  • Mari M, Bujny MV, Zeuschner D, Geerts WJ, Griffith J, Petersen CM, Cullen PJ, Klumperman J, Geuze HJ (2008) SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 9:380–393

    Article  PubMed  CAS  Google Scholar 

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  PubMed  CAS  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  PubMed  CAS  Google Scholar 

  • McCormick PJ, Dumaresq Doiron K, Pluviose AS, Pichette V, Tosato G, Lefrancois S (2008) Palmitoylation controls recycling in lysosomal sorting and trafficking. Traffic 9:1984–1997

    Article  PubMed  CAS  Google Scholar 

  • McCrea HJ, De Camilli P (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology 24:8–16

    Article  PubMed  CAS  Google Scholar 

  • McCullough J, Clague MJ, Urbe S (2004) AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 166:487–492

    Article  PubMed  CAS  Google Scholar 

  • McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R, Clague MJ, Urbe S (2006) Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr Biol 16:160–165

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  PubMed  CAS  Google Scholar 

  • McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De Camilli P (1996) A presynaptic inositol-5-phosphatase. Nature 379:353–357

    Article  PubMed  CAS  Google Scholar 

  • Medigeshi GR, Schu P (2003) Characterization of the in vitro retrograde transport of MPR46. Traffic 4:802–811

    Article  PubMed  CAS  Google Scholar 

  • Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Ann Rev Biochem 79:803–833

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698

    Article  PubMed  CAS  Google Scholar 

  • Mettlen M, Pucadyil T, Ramachandran R, Schmid SL (2009) Dissecting dynamin’s role in clathrin-mediated endocytosis. Biochem Soc Trans 37:1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Mettlen M, Loerke D, Yarar D, Danuser G, Schmid SL (2010) Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J Cell Biol 188:919–933

    Article  PubMed  CAS  Google Scholar 

  • Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B, Wilm M, Parton RG, Zerial M (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116:445–456

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, Heath VL, Lemmon MA, Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31:52–63

    Article  PubMed  CAS  Google Scholar 

  • Mills IG, Praefcke GJ, Vallis Y, Peter BJ, Olesen LE, Gallop JL, Butler PJ, Evans PR, McMahon HT (2003) EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J Cell Biol 160:213–222

    Article  PubMed  CAS  Google Scholar 

  • Miserey-Lenkei S, Waharte F, Boulet A, Cuif MH, Tenza D, El Marjou A, Raposo G, Salamero J, Heliot L, Goud B, Monier S (2007) Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic 8:1385–1403

    Article  PubMed  CAS  Google Scholar 

  • Mizuno E, Kobayashi K, Yamamoto A, Kitamura N, Komada M (2006) A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic 7:1017–1031

    Article  PubMed  CAS  Google Scholar 

  • Morita E, Sundquist WI (2004) Retrovirus budding. Annu Rev Cell Dev Biol 20:395–425

    Article  PubMed  CAS  Google Scholar 

  • Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227

    Article  PubMed  CAS  Google Scholar 

  • Muziol T, Pineda-Molina E, Ravelli RB, Zamborlini A, Usami Y, Gottlinger H, Weissenhorn W (2006) Structural basis for budding by the ESCRT-III factor CHMP3. Dev Cell 10:821–830

    Article  PubMed  CAS  Google Scholar 

  • Nakano-Kobayashi A, Yamazaki M, Unoki T, Hongu T, Murata C, Taguchi R, Katada T, Frohman MA, Yokozeki T, Kanaho Y (2007) Role of activation of PIP5K[gamma]661 by AP-2 complex in synaptic vesicle endocytosis. EMBO J 26:1105–1116

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu F, Perera RM, Lucast L, Zoncu R, Domin J, Gertler FB, Toomre D, De Camilli P (2010) The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. J Cell Biol 190:307–315

    Article  PubMed  CAS  Google Scholar 

  • Naslavsky N, Rahajeng J, Sharma M, Jovic M, Caplan S (2006) Interactions between EHD proteins and Rab11-FIP2: a role for EHD3 in early endosomal transport. Mol Biol Cell 17:163–177

    Article  PubMed  CAS  Google Scholar 

  • Naslavsky N, Rahajeng J, Chenavas S, Sorgen PL, Caplan S (2007) EHD1 and Eps15 interact with phosphatidylinositols via their Eps15 homology domains. J Biol Chem 282:16612–16622

    Article  PubMed  CAS  Google Scholar 

  • Naslavsky N, McKenzie J, Altan-Bonnet N, Sheff D, Caplan S (2009) EHD3 regulates early-endosome-to-Golgi transport and preserves Golgi morphology. J Cell Sci 122:389–400

    Article  PubMed  CAS  Google Scholar 

  • Naughtin MJ, Sheffield DA, Rahman P, Hughes WE, Gurung R, Stow JL, Nandurkar HH, Dyson JM, Mitchell CA (2010) The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J Cell Sci 123:3071–3083

    Article  PubMed  CAS  Google Scholar 

  • Nicot AS, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9:1240–1249

    Article  PubMed  CAS  Google Scholar 

  • Nisar S, Kelly E, Cullen PJ, Mundell SJ (2010) Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent. Traffic 11:508–519

    Article  PubMed  CAS  Google Scholar 

  • Norwood SJ, Shaw DJ, Cowieson NP, Owen DJ, Teasdale RD, Collins BM (2010) Assembly and solution structure of the core retromer protein complex. Traffic 12:56–71

    Google Scholar 

  • Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A 101:14889–14894

    Article  PubMed  CAS  Google Scholar 

  • Ooms LM, Horan KA, Rahman P, Seaton G, Gurung R, Kethesparan DS, Mitchell CA (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419:29–49.

    Article  PubMed  CAS  Google Scholar 

  • Orth JD, McNiven MA (2003) Dynamin at the actin-membrane interface. Curr Opin Cell Biol 15:31–39

    Article  PubMed  CAS  Google Scholar 

  • Otsuki T, Kajigaya S, Ozawa K, Liu JM (1999) SNX5, a new member of the sorting nexin family, binds to the Fanconi anemia complementation group A protein. Biochem Biophys Res Commun 265:630–635

    Article  PubMed  CAS  Google Scholar 

  • Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G (2008) C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell 14:132–139

    Article  PubMed  CAS  Google Scholar 

  • Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD (2009) AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11:1399–1410

    Article  PubMed  CAS  Google Scholar 

  • Paolo GD, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, Camilli PD (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422

    Article  PubMed  CAS  Google Scholar 

  • Park J, Kim Y, Lee S, Park JJ, Park ZY, Sun W, Kim H, Chang S (2010) SNX18 shares a redundant role with SNX9 and modulates endocytic trafficking at the plasma membrane. J Cell Sci 123:1742–1750

    Article  PubMed  CAS  Google Scholar 

  • Parks WT, Frank DB, Huff C, Renfrew HAFT C, Martin J, Meng X, De Caestecker MP, McNally JG, Reddi A, Taylor SI, Roberts AB, Wang T, Lechleider RJ (2001) Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases. J Biol Chem 276:19332–19339

    Article  PubMed  CAS  Google Scholar 

  • Perera RM, Zoncu R, Lucast L, De Camilli P, Toomre D (2006) Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci 103:19332–19337

    Article  PubMed  CAS  Google Scholar 

  • Petiot A, Faure J, Stenmark H, Gruenberg J (2003) PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J Cell Biol 162:971–979

    Article  PubMed  CAS  Google Scholar 

  • Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 23:519–547

    Article  PubMed  CAS  Google Scholar 

  • Pons V, Hullin-Matsuda F, Nauze M, Barbaras R, Peres C, Collet X, Perret B, Chap H, Gassama,-DIAGNE A (2003) Enterophilin-1, a new partner of sorting nexin 1, decreases cell surface epidermal growth factor receptor. J Biol Chem 278:21155–21161

    Article  PubMed  CAS  Google Scholar 

  • Pons V, Luyet PP, Morel E, Abrami L, Van der Goot FG, Parton RG, Gruenberg J (2008) Hrs and SNX3 functions in sorting and membrane invagination within multivesicular bodies. PLoS Biol 6:e214

    Article  CAS  Google Scholar 

  • Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L (2007) The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 120:2022–2031

    Article  PubMed  CAS  Google Scholar 

  • Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbe S, Lamaze C, Grant BD, Raposo G, Johannes L (2009) Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 10:1868–1880

    Article  PubMed  CAS  Google Scholar 

  • Port F, Kuster M, Herr P, Furger E, Banziger C, Hausmann G, Basler K (2008) Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol 10:178–185

    Article  PubMed  CAS  Google Scholar 

  • Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141:497–508

    Article  PubMed  CAS  Google Scholar 

  • Pucadyil TJ, Schmid SL (2009) Conserved functions of membrane active GTPases in coated vesicle formation. Science 325:1217–1220

    Article  PubMed  CAS  Google Scholar 

  • Raiborg C, Bremnes B, Mehlum A, Gillooly DJ, D’ARRIGO A, Stang E, Stenmark H (2001) FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J Cell Sci 114:2255–2263

    PubMed  CAS  Google Scholar 

  • Rappoport JZ, Heyman KP, Kemal S, Simon SM (2008) Dynamics of dynamin during clathrin mediated endocytosis in PC12 cells. PLoS One 3:e2416

    Article  CAS  Google Scholar 

  • Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389–1402

    PubMed  CAS  Google Scholar 

  • Ren X, Hurley JH (2010) VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 29:1045–1054

    Google Scholar 

  • Rincon E, Santos T, Avila-Flores A, Albar JP, Lalioti V, Lei C, Hong W, Merida I (2007) Proteomics identification of sorting nexin 27 as a diacylglycerol kinase zeta-associated protein: new diacylglycerol kinase roles in endocytic recycling. Mol Cell Proteomics 6:1073–1087

    Article  PubMed  CAS  Google Scholar 

  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    Article  PubMed  CAS  Google Scholar 

  • Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16:403–412

    Article  PubMed  CAS  Google Scholar 

  • Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8:4936–4948

    PubMed  CAS  Google Scholar 

  • Rojas R, Van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck AJ, Raposo G, Van der Sluijs P, Bonifacino JS (2008) Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol 183:513–526

    Article  PubMed  CAS  Google Scholar 

  • Rossman JS, Jing X, Leser GP, Lamb RA (2010) Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142:902–913

    Article  PubMed  CAS  Google Scholar 

  • Roux A, Uyhazi K, Frost A, De Camilli P (2006) GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441:528–531

    Article  PubMed  CAS  Google Scholar 

  • Roux A, Koster G, Lenz M, Sorre B, Manneville JB, Nassoy P, Bassereau P (2010a) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci U S A 107:4141–4146

    Article  CAS  Google Scholar 

  • Roux AL, Koster G, Lenz M, Sorre BT, Manneville J-B, Nassoy P, Bassereau P (2010b) Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci 107:4141–4146

    Article  CAS  Google Scholar 

  • Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15:24–36

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957

    Article  PubMed  CAS  Google Scholar 

  • Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 103:11364–11369

    Article  PubMed  CAS  Google Scholar 

  • Saffarian S, Cocucci E, Kirchhausen T (2009) Distinct dynamics of endocytic clathrin-coated pits and coated plaques. PLoS Biol 7:e1000191

    Article  CAS  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    Article  PubMed  CAS  Google Scholar 

  • Sagona AP, Nezis IP, Pedersen NM, Liestol K, Poulton J, Rusten TE, Skotheim RI, Raiborg C, Stenmark H (2010) PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 12:362–371

    Article  PubMed  CAS  Google Scholar 

  • Saint-Pol A, Yelamos B, Amessou M, Mills IG, Dugast M, Tenza D, Schu P, Antony C, McMahon HT, Lamaze C, Johannes L (2004) Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev Cell 6:525–538

    Article  PubMed  CAS  Google Scholar 

  • Saksena S, Wahlman J, Teis D, Johnson AE, Emr SD (2009) Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136:97–109

    Article  PubMed  CAS  Google Scholar 

  • Salim K, Bottomley MJ, Querfurth E, Zvelebil MJ, Gout I, Scaife R, Margolis RL, Gigg R, Smith CI, Driscoll PC, Waterfield MD, Panayotou G (1996) Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J 15:6241–6250

    PubMed  CAS  Google Scholar 

  • Sankaran VG, Klein DE, Sachdeva MM, Lemmon MA (2001) High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. Biochemistry 40:8581–8587

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (1999) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 274:21589–21597

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J, Dondapati R, Mlak K, Deeb R, Silver R, Shisheva A (2004) A mammalian ortholog of Saccharomyces cerevisiae Vac14 that associates with and up-regulates PIKfyve phosphoinositide 5-kinase activity. Mol Cell Biol 24:10437–10447

    Article  PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. J Biol Chem 282:23878–23891

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA (2004) Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5:463–469

    Article  PubMed  CAS  Google Scholar 

  • Schmid EM, McMahon HT (2007) Integrating molecular and network biology to decode endocytosis. Nature 448:883–888

    Article  PubMed  CAS  Google Scholar 

  • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165:111–122

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN (2007) Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 120:2378–2389

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN, McCaffery JM, Emr SD (1998) A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142:665–681

    Article  PubMed  CAS  Google Scholar 

  • Seaman MN, Harbour ME, Tattersall D, Read E, Bright N (2009) Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 122:2371–2382

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Naslavsky N, Caplan S (2008) A role for EHD4 in the regulation of early endosomal transport. Traffic 9:995–1018

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Giridharan SS, Rahajeng J, Naslavsky N, Caplan S (2009) MICAL-L1 links EHD1 to tubular recycling endosomes and regulates receptor recycling. Mol Biol Cell 20:5181–5194

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Rojas R, Bonifacino JS, Hurley JH (2006) The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat Struct Mol Biol 13:540–548

    Article  PubMed  CAS  Google Scholar 

  • Shi A, Sun L, Banerjee R, Tobin M, Zhang Y, Grant BD (2009) Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J 28:3290–3302

    Article  PubMed  CAS  Google Scholar 

  • Shiba Y, Romer W, Mardones GA, Burgos PV, Lamaze C, Johannes L (2010) AGAP2 regulates retrograde transport between early endosomes and the TGN. J Cell Sci 123:2381–2390

    Article  PubMed  CAS  Google Scholar 

  • Shields SB, Oestreich AJ, Winistorfer S, Nguyen D, Payne JA, Katzmann DJ, Piper R (2009) ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting. J Cell Biol 185:213–224

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Niwa H, Tsujita K, Suetsugu S, Nitta K, Hanawa-Suetsugu K, Akasaka R, Nishino Y, Toyama M, Chen L, Liu ZJ, Wang BC, Yamamoto M, Terada T, Miyazawa A, Tanaka A, Sugano S, Shirouzu M, Nagayama K, Takenawa T, Yokoyama S (2007) Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129:761–772

    Article  PubMed  CAS  Google Scholar 

  • Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170:607–618.

    Article  PubMed  CAS  Google Scholar 

  • Shin N, Lee S, Ahn N, Kim SA, Ahn SG, Yongpark Z, Chang S (2007) Sorting nexin 9 interacts with dynamin 1 and N-WASP and coordinates synaptic vesicle endocytosis. J Biol Chem 282:28939–28950

    Article  PubMed  CAS  Google Scholar 

  • Shin N, Ahn N, Chang-Ileto B, Park J, Takei K, Ahn SG, Kim SA, Di Paolo G, Chang S (2008) SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2. J Cell Sci 121:1252–1263

    Article  PubMed  CAS  Google Scholar 

  • Shisheva A (2008) PIKfyve: Partners, significance, debates and paradoxes. Cell Biol Int 32:591–604

    Article  PubMed  CAS  Google Scholar 

  • Shisheva A, Sbrissa D, Ikonomov O (1999) Cloning, characterization, and expression of a novel Zn2 + -binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol Cell Biol 19:623–634

    PubMed  CAS  Google Scholar 

  • Skanland SS, Walchli S, Utskarpen A, Wandinger-Ness A, Sandvig K (2007) Phosphoinositide-regulated retrograde transport of ricin: crosstalk between hVps34 and sorting nexins. Traffic 8:297–309

    Article  PubMed  CAS  Google Scholar 

  • Skanland SS, Walchli S, Brech A, Sandvig K (2009) SNX4 in complex with clathrin and dynein: implications for endosome movement. PLoS One 4:e5935

    Article  CAS  Google Scholar 

  • Slagsvold T, Aasland R, Hirano S, Bache KG, Raiborg C, Trambaiolo D, Wakatsuki S, Stenmark H (2005) Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J Biol Chem 280:19600–19606

    Article  PubMed  CAS  Google Scholar 

  • Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58:909–919

    Article  PubMed  CAS  Google Scholar 

  • Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204

    PubMed  CAS  Google Scholar 

  • Stahelin RV, Burian A, Bruzik KS, Murray D, Cho W (2003) Membrane binding mechanisms of the PX domains of NADPH oxidase p40phox and p47phox. J Biol Chem 278:14469–14479

    Article  PubMed  CAS  Google Scholar 

  • Stockinger W, Sailler B, Strasser V, Recheis B, Fasching D, Kahr L, Schneider WJ, Nimpf J (2002) The PX-domain protein SNX17 interacts with members of the LDL receptor family and modulates endocytosis of the LDL receptor. EMBO J 21:4259–4267

    Article  PubMed  CAS  Google Scholar 

  • Stowell MH, Marks B, Wigge P, McMahon HT (1999) Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat Cell Biol 1:27–32

    Article  PubMed  CAS  Google Scholar 

  • Strochlic TI, Setty TG, Sitaram A, Burd CG (2007) Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J Cell Biol 177:115–125

    Article  PubMed  CAS  Google Scholar 

  • Stuffers S, Sem WEGNER C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10:925–937

    Article  PubMed  CAS  Google Scholar 

  • Sundquist WI, Schubert HL, Kelly BN, Hill GC, Holton JM, Hill CP (2004) Ubiquitin recognition by the human TSG101 protein. Mol Cell 13:783–789

    Article  PubMed  CAS  Google Scholar 

  • Sweitzer SM, Hinshaw JE (1998) Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi M, Yanatori I, Kawai Y, Kishi F (2010) Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1. J Cell Sci 123:756–766

    Article  PubMed  CAS  Google Scholar 

  • Takei K, McPherson PS, Schmid SL, De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374:186–190

    Article  PubMed  CAS  Google Scholar 

  • Teasdale RD, Loci D, Houghton F, Karlsson L, Gleeson PA (2001) A large family of endosome-localized proteins related to sorting nexin 1. Biochem J 358:7–16

    Article  PubMed  CAS  Google Scholar 

  • Teis D, Saksena S, Emr SD (2008) Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15:578–589

    Article  PubMed  CAS  Google Scholar 

  • Teo H, Veprintsev DB, Williams RL (2004) Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J Biol Chem 279:28689–28696

    Article  PubMed  CAS  Google Scholar 

  • Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL (2006) ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125:99–111

    Article  PubMed  CAS  Google Scholar 

  • Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, Thomas PC, Raposo G, Marks MS (2006) A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell 10:343–354

    Article  PubMed  CAS  Google Scholar 

  • Thieman JR, Mishra SK, Ling K, Doray B, Anderson RA, Traub LM (2009) Clathrin regulates the association of PIPKIγ661 with the AP-2 adaptor β2 appendage. J Biol Chem 284:13924–13939

    Article  PubMed  CAS  Google Scholar 

  • Touchberry CD, Bales IK, Stone JK, Rohrberg TJ, Parelkar NK, Nguyen T, Fuentes O, Liu X, Qu CK, Andresen JJ, Valdivia HH, Brotto M, Wacker MJ (2010) Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor. J Biol Chem 285:40312–40321

    Google Scholar 

  • Towler MC, Gleeson PA, Hoshino S, Rahkila P, Manalo V, Ohkoshi N, Ordahl C, Parton RG, Brodsky FM (2004) Clathrin isoform CHC22, a component of neuromuscular and myotendinous junctions, binds sorting nexin 5 and has increased expression during myogenesis and muscle regeneration. Mol Biol Cell 15:3181–3195

    Article  PubMed  CAS  Google Scholar 

  • Traer CJ, Rutherford AC, Palmer KJ, Wassmer T, Oakley J, Attar N, Carlton JG, Kremerskothen J, Stephens DJ, Cullen PJ (2007) SNX4 coordinates endosomal sorting of TfnR with dynein-mediated transport into the endocytic recycling compartment. Nat Cell Biol 9:1370–1380

    Article  PubMed  CAS  Google Scholar 

  • Traub LM (2003) Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 163:203–208

    Article  PubMed  CAS  Google Scholar 

  • Traub LM (2009a) Clathrin couture: fashioning distinctive membrane coats at the cell surface. PLoS Biol 7:e1000192

    Article  CAS  Google Scholar 

  • Traub LM (2009b) Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat Rev Mol Cell Biol 10:583–596

    Article  CAS  Google Scholar 

  • Tsuruta F, Green EM, Rousset M, Dolmetsch RE (2009) PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. J Cell Biol 187:279–294

    Article  PubMed  CAS  Google Scholar 

  • van Den Bout I, Divecha N (2009) PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 122:3837–3850

    Article  PubMed  CAS  Google Scholar 

  • van Kerkhof P , Lee J, McCormick L, Tetrault E, Lu W, Schoenfish M, Oorschot V, Strous GJ, Klumperman J, Bu G (2005) Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J 24:2851–2861

    Article  PubMed  CAS  Google Scholar 

  • van Rossum DB , Patterson RL, Sharma S, Barrow RK, Kornberg M, Gill DL, Snyder SH (2005) Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341

    Article  PubMed  CAS  Google Scholar 

  • Verges M (2008) Retromer: multipurpose sorting and specialization in polarized transport. Int Rev Cell Mol Biol 271:153–198

    Article  PubMed  CAS  Google Scholar 

  • Verges M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE (2004) The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 6:763–769

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299–310

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Guo M, Liang Z, Fan J, Zhu Z, Zang J, Li X, Teng M, Niu L, Dong Y, Liu P (2005) Crystal structure of human vacuolar protein sorting protein 29 reveals a phosphodiesterase/nuclease-like fold and two protein-protein interaction sites. J Biol Chem 280:22962–22967

    Article  PubMed  CAS  Google Scholar 

  • Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54

    Article  PubMed  CAS  Google Scholar 

  • Wassmer T, Attar N, Harterink M, Van Weering JR, Traer CJ, Oakley J, Goud B, Stephens DJ, Verkade P, Korswagen HC, Cullen PJ (2009) The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Dev Cell 17:110–122

    Article  PubMed  CAS  Google Scholar 

  • Wenk MR, Pellegrini L, Klenchin VA, Di Paolo G, Chang S, Daniell L, Arioka M, Martin TF, De Camilli P (2001) PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. Neuron 32:79–88

    Article  PubMed  CAS  Google Scholar 

  • Whitley P, Reaves BJ, Hashimoto M, Riley AM, Potter BV, Holman GD (2003) Identification of mammalian Vps24p as an effector of phosphatidylinositol 3,5-bisphosphate-dependent endosome compartmentalization. J Biol Chem 278:38786–38795

    Article  PubMed  CAS  Google Scholar 

  • Williams RL, Urbe S (2007) The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8:355–368

    Article  PubMed  CAS  Google Scholar 

  • Williams R, Schluter T, Roberts MS, Knauth P, Bohnensack R, Cutler DF (2004) Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol Biol Cell 15:3095–3105

    Article  PubMed  CAS  Google Scholar 

  • Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464:864–869

    Article  PubMed  CAS  Google Scholar 

  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177

    Article  PubMed  CAS  Google Scholar 

  • Yarar D, Waterman-Storer CM, Schmid SL (2007) SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev Cell 13:43–56

    Article  PubMed  CAS  Google Scholar 

  • Yarar D, Surka MC, Leonard MC, Schmid SL (2008) SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 9:133–146

    Article  PubMed  CAS  Google Scholar 

  • Yoon T, Kim M, Lee K (2006) Inhibition of Na, K-ATPase-suppressive activity of translationally controlled tumor protein by sorting nexin 6. FEBS Lett 580:3558–3564

    Article  PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci 104:17518–17523

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J (2008) Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131:1990–2001

    Article  PubMed  Google Scholar 

  • Zoncu R, Perera RM, Balkin DM, Pirruccello M, Toomre D, De Camilli P (2009) A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136:1110–1121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Phosphoinositide research in the Cullen lab is supported by the Wellcome Trust, the Biotechnology and Biological Sciences Research Council, the Royal Society and the Swiss Science Federation. J.G. Carlton is a Wellcome Trust VIP and RCDF fellow. We thank all of our colleagues, past and present, for their intellectual input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cullen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cullen, P.J., Carlton, J.G. (2012). Phosphoinositides in the Mammalian Endo-lysosomal Network. In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides II: The Diverse Biological Functions. Subcellular Biochemistry, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3015-1_3

Download citation

Publish with us

Policies and ethics