Skip to main content

Advertisement

Log in

GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hemorrhagic transformation (HT) is a devastating complication for patients with acute ischemic stroke who are treated with tissue plasminogen activator (tPA). It is associated with high morbidity and mortality, but no effective treatments are currently available to reduce HT risk. Therefore, methods to prevent HT are urgently needed. In this study, we used TWS119, an inhibitor of glycogen synthase kinase 3β (GSK-3β), to evaluate the role of the Wnt/β-catenin signaling pathway in recombinant tPA (rtPA)-induced HT. Sprague–Dawley rats were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke and then were administered rtPA, rtPA combined with TWS119, or vehicle at 4 h. The animals were sacrificed 24 h after infarct induction. Rats treated with rtPA showed evident HT, had more severe neurologic deficit, brain edema, and blood–brain barrier breakdown, and had larger infarction volume than did the vehicle group. Rats treated with TWS119 had significantly improved outcomes compared with those of rats treated with rtPA alone. In addition, Western blot analysis showed that TWS119 increased the protein expression of β-catenin, claudin-3, and ZO-1 while suppressing the expression of GSK-3β. These results suggest that TWS119 reduces rtPA-induced HT and attenuates blood–brain barrier disruption, possibly through activation of the Wnt/β-catenin signaling pathway. This study provides a potential therapeutic strategy to prevent tPA-induced HT after acute ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beslow LA, Smith SE, Vossough A, Licht DJ, Kasner SE, Favilla CG, Halperin AR, Gordon DM et al (2011) Hemorrhagic transformation of childhood arterial ischemic stroke. Stroke 42(4):941–946. doi:10.1161/STROKEAHA.110.604199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. dela Pena IC, Yoo A, Tajiri N, Acosta SA, Ji X, Kaneko Y, Borlongan CV (2015) Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab 35(2):338–346. doi:10.1038/jcbfm.2014.208

    Article  CAS  PubMed  Google Scholar 

  3. Ozkul-Wermester O, Guegan-Massardier E, Triquenot A, Borden A, Perot G, Gerardin E (2014) Increased blood–brain barrier permeability on perfusion computed tomography predicts hemorrhagic transformation in acute ischemic stroke. Eur Neurol 72(1–2):45–53. doi:10.1159/000358297

    Article  CAS  PubMed  Google Scholar 

  4. Tan Z, Li X, Turner RC, Logsdon AF, Lucke-Wold B, DiPasquale K, Jeong SS, Chen R et al (2014) Combination treatment of r-tPA and an optimized human apyrase reduces mortality rate and hemorrhagic transformation 6h after ischemic stroke in aged female rats. Eur J Pharmacol 738:368–373. doi:10.1016/j.ejphar.2014.05.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Wang Y, Zuo Z, Wang Z, Roy J, Hou Q, Tong E, Hoffmann A et al (2014) Effects of tissue plasminogen activator timing on blood–brain barrier permeability and hemorrhagic transformation in rats with transient ischemic stroke. J Neurol Sci 347(1–2):148–154. doi:10.1016/j.jns.2014.09.036

    Article  CAS  PubMed  Google Scholar 

  6. Rosell A, Foerch C, Murata Y, Lo EH (2008) Mechanisms and markers for hemorrhagic transformation after stroke. Acta Neurochir Suppl 105:173–178

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, Lo EH (2004) Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke 35(11 Suppl 1):2726–2730. doi:10.1161/01.STR.0000143219.16695.af

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Li M, Chen Q, Wang J (2015) Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: mechanisms, models, and biomarkers. Mol Neurobiol 52(3):1572–1579. doi:10.1007/s12035-014-8952-x

    Article  CAS  PubMed  Google Scholar 

  9. Liu L, Wan W, Xia S, Kalionis B, Li Y (2014) Dysfunctional Wnt/β-catenin signaling contributes to blood–brain barrier breakdown in Alzheimer’s disease. Neurochem Int 75:19–25. doi:10.1016/j.neuint.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  10. Polakis P (2008) Formation of the blood–brain barrier: Wnt signaling seals the deal. J Cell Biol 183(3):371–373. doi:10.1083/jcb.200810040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood–brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31(2):248–256. doi:10.1016/j.devcel.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caspi M, Perry G, Skalka N, Meisel S, Firsow A, Amit M, Rosin-Arbesfeld R (2014) Aldolase positively regulates of the canonical Wnt signaling pathway. Mol Cancer 13:164. doi:10.1186/1476-4598-13-164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kikuchi A (2013) Canonical Wnt signaling pathway and cellular responses. Clin Calcium 23(6):799–807, doi: CliCa1306799807

    CAS  PubMed  Google Scholar 

  14. Han P, Ivanovski S, Crawford R, Xiao Y (2015) Activation of the canonical Wnt signaling pathway induces cementum regeneration. J Bone Miner Res 30(7):1160–1174. doi:10.1002/jbmr.2445

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J (2013) Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain Behav Immun 34:56–66. doi:10.1016/j.bbi.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  16. Ding S, Schultz PG (2004) A role for chemistry in stem cell biology. Nat Biotechnol 22(7):833–840. doi:10.1038/nbt987

    Article  CAS  PubMed  Google Scholar 

  17. Grassilli E, Ianzano L, Bonomo S, Missaglia C, Cerrito MG, Giovannoni R, Masiero L, Lavitrano M (2014) GSK3A is redundant with GSK3B in modulating drug resistance and chemotherapy-induced necroptosis. PLoS One 9(7):e100947. doi:10.1371/journal.pone.0100947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang T, Sun S, Wang T, Tong X, Bi J, Wang Y, Sun Z (2014) Piperlonguminine is neuroprotective in experimental rat stroke. Int Immunopharmacol 23(2):447–451. doi:10.1016/j.intimp.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  19. Zan L, Wu H, Jiang J, Zhao S, Song Y, Teng G, Li H, Jia Y et al (2011) Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochem Int 58(8):872–879. doi:10.1016/j.neuint.2011.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thal SC, Luh C, Schaible EV, Timaru-Kast R, Hedrich J, Luhmann HJ, Engelhard K, Zehendner CM (2012) Volatile anesthetics influence blood–brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury. PLoS One 7(12):e50752. doi:10.1371/journal.pone.0050752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu H, Wu T, Li M, Wang J (2012) Efficacy of the lipid-soluble iron chelator 2,2′-dipyridyl against hemorrhagic brain injury. Neurobiol Dis 45(1):388–394. doi:10.1016/j.nbd.2011.08.028

    Article  CAS  PubMed  Google Scholar 

  22. Lu A, Suofu Y, Guan F, Broderick JP, Wagner KR, Clark JF (2013) Matrix metalloproteinase-2 deletions protect against hemorrhagic transformation after 1h of cerebral ischemia and 23h of reperfusion. Neuroscience 253:361–367. doi:10.1016/j.neuroscience.2013.08.068

    Article  CAS  PubMed  Google Scholar 

  23. Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346(6205):1248012. doi:10.1126/science.1248012

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Liu X, Lu H, Jiang C, Cui X, Yu L, Fu X, Li Q et al (2015) CXCR4+ CD45− BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain Behav Immun 45:98–108. doi:10.1016/j.bbi.2014.12.015

    Article  CAS  PubMed  Google Scholar 

  25. Zhang W, Davis CM, Edin ML, Lee CR, Zeldin DC, Alkayed NJ (2013) Role of endothelial soluble epoxide hydrolase in cerebrovascular function and ischemic injury. PLoS One 8(4):e61244. doi:10.1371/journal.pone.0061244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li M, Zhang Z, Sun W, Koehler RC, Huang J (2011) 17β-estradiol attenuates breakdown of blood–brain barrier and hemorrhagic transformation induced by tissue plasminogen activator in cerebral ischemia. Neurobiol Dis 44(3):277–283. doi:10.1016/j.nbd.2011.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao X, Wu T, Chang CF, Wu H, Han X, Li Q, Gao Y, Li Q et al (2015) Toxic role of prostaglandin E2 receptor EP1 after intracerebral hemorrhage in mice. Brain Behav Immun 46:293–310. doi:10.1016/j.bbi.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu H, Wu T, Hua W, Dong X, Gao Y, Zhao X, Chen W, Cao W et al (2015) PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiol Aging 36(3):1439–1450. doi:10.1016/j.neurobiolaging.2014.12.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tran-Dinh A, Levoye A, Lambert G, Louedec L, Journe C, Meilhac O, Amarenco P (2014) Low levels of low-density lipoprotein-C associated with proprotein convertase subtilisin kexin 9 inhibition do not increase the risk of hemorrhagic transformation. Stroke 45(10):3086–3088. doi:10.1161/STROKEAHA.114.005958

    Article  CAS  PubMed  Google Scholar 

  30. Kawamura K, Takahashi T, Kanazawa M, Igarashi H, Nakada T, Nishizawa M, Shimohata T (2014) Effects of angiopoietin-1 on hemorrhagic transformation and cerebral edema after tissue plasminogen activator treatment for ischemic stroke in rats. PLoS One 9(6):e98639. doi:10.1371/journal.pone.0098639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Artus C, Glacial F, Ganeshamoorthy K, Ziegler N, Godet M, Guilbert T, Liebner S, Couraud PO (2014) The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab 34(3):433–440. doi:10.1038/jcbfm.2013.213

    Article  CAS  PubMed  Google Scholar 

  32. Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ, Rudini N, Maddaluno L et al (2013) Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 8(8):e70233. doi:10.1371/journal.pone.0070233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Siegler JE, Alvi M, Boehme AK, Lyerly MJ, Albright KC, Shahripour RB, Rawal PV, Kapoor N et al (2013) Hemorrhagic transformation (HT) and symptomatic intracerebral hemorrhage (sICH) risk prediction models for postthrombolytic hemorrhage in the stroke belt. ISRN Stroke 2013:681673. doi:10.1155/2013/681673

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jin X, Liu J, Liu W (2014) Early ischemic blood brain barrier damage: a potential indicator for hemorrhagic transformation following tissue plasminogen activator (tPA) thrombolysis? Curr Neurovasc Res 11(3):254–262

    Article  CAS  PubMed  Google Scholar 

  35. Song M, Lim J, Yu HY, Park J, Chun JY, Jeong J, Heo J, Kang H et al (2015) Mesenchymal stem cell therapy alleviates interstitial cystitis by activating Wnt signaling pathway. Stem Cells Dev 24(14):1648–1657. doi:10.1089/scd.2014.0459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reis M, Liebner S (2013) Wnt signaling in the vasculature. Exp Cell Res 319(9):1317–1323. doi:10.1016/j.yexcr.2012.12.023

    Article  CAS  PubMed  Google Scholar 

  37. Zhou J, Chen Y, Cao C, Chen X, Gao W, Zhang L (2015) Inactivation of glycogen synthase kinase-3β up-regulates β-catenin and promotes chondrogenesis. Cell Tissue Bank 16(1):135–142. doi:10.1007/s10561-014-9449-6

    Article  CAS  PubMed  Google Scholar 

  38. Ji XK, Xie YK, Zhong JQ, Xu QG, Zeng QQ, Wang Y, Zhang QY, Shan YF (2015) GSK-3β suppresses the proliferation of rat hepatic oval cells through modulating Wnt/β-catenin signaling pathway. Acta Pharmacol Sin 36(3):334–342. doi:10.1038/aps.2014.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Milatz S, Krug SM, Rosenthal R, Gunzel D, Muller D, Schulzke JD, Amasheh S, Fromm M (2010) Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta 1798(11):2048–2057. doi:10.1016/j.bbamem.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  40. Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Adal A, Qi M, Toh J et al (2008) Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: Implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 1203:133–148. doi:10.1016/j.brainres.2008.01.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kazmierski R, Michalak S, Wencel-Warot A, Nowinski WL (2012) Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology 79(16):1677–1685. doi:10.1212/WNL.0b013e31826e9a83

    Article  CAS  PubMed  Google Scholar 

  42. Haseloff RF, Dithmer S, Winkler L, Wolburg H, Blasig IE (2014) Transmembrane proteins of the tight junctions at the blood–brain barrier: structural and functional aspects. Semin Cell Dev Biol 38:16–25. doi:10.1016/j.semcdb.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  43. Zan L, Zhang X, Xi Y, Wu H, Song Y, Teng G, Li H, Qi J et al (2014) Src regulates angiogenic factors and vascular permeability after focal cerebral ischemia-reperfusion. Neuroscience 262:118–128. doi:10.1016/j.neuroscience.2013.12.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K et al (2015) ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 208(6):821–838. doi:10.1083/jcb.201404140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neuhaus W, Wirth M, Plattner VE, Germann B, Gabor F, Noe CR (2008) Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood–brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neurosci Lett 446(2–3):59–64. doi:10.1016/j.neulet.2008.09.025

    Article  CAS  PubMed  Google Scholar 

  46. Won S, Lee JH, Wali B, Stein DG, Sayeed I (2014) Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab 34(1):72–80. doi:10.1038/jcbfm.2013.163

    Article  CAS  PubMed  Google Scholar 

  47. Qu B, Liu BR, Du YJ, Chen J, Cheng YQ, Xu W, Wang XH (2014) Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol Lett 7(4):1175–1178. doi:10.3892/ol.2014.1828

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ajmone-Cat MA, D’Urso MC, di Blasio G, Brignone MS, De Simone R, Minghetti L (2015) Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain Behav Immun. doi:10.1016/j.bbi.2015.11.012

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81171112, 81371272 to M.C.L., 81372683 to Q.X.C.) and grants from the National Institutes of Health (R01NS078026, R01AT007317 to J. W.). We thank Jiarui Wang and Claire Levine, MS, ELS, for assistance with the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianxue Chen or Jian Wang.

Ethics declarations

All protocols used in this study were approved by the Institutional Animal Care and Use Committee at Wuhan University.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Wei Wang and Mingchang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, M., Wang, Y. et al. GSK-3β inhibitor TWS119 attenuates rtPA-induced hemorrhagic transformation and activates the Wnt/β-catenin signaling pathway after acute ischemic stroke in rats. Mol Neurobiol 53, 7028–7036 (2016). https://doi.org/10.1007/s12035-015-9607-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9607-2

Keywords

Navigation