Skip to main content
Log in

The Nanoscale Observation of the Three-Dimensional Structures of Neurosynapses, Membranous Conjunctions Between Cultured Hippocampal Neurons and Their Significance in the Development of Epilepsy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The nanoscale three-dimensional structures of neurosynapses are unknown, and the neuroanatomical basis of epilepsy remains to be elucidated. Here, we studied the nanoscale three-dimensional synapses between hippocampal neurons, and membranous conjunctions between neurons were found with atomic force microscopy (AFM) and confirmed by transmission electron microscope (TEM), and their pathophysiological significance was primarily investigated. The neurons and dendrites were marked by MAP-2, axons by neurofilament 200, and synapses by synapsin I immunological staining. In the synapsin I-positive neurite ends of the neurons positively stained with MAP-2 and neurofilament 200, neurosynapses with various nanoscale morphology and structure could be found by AFM. The neurosynapses had typical three-dimensional structures of synaptic triplet including the presynaptic neurite end, synaptic cleft of 30 ∼ 40 in chemical synapses and 2 ∼ 6 nm in electrical ones, the postsynaptic neurite or dendrite spine, the typical neurite end button, the distinct pre- and postsynaptic membranes, and the obvious thickening of the postsynaptic membranes or neurites. Some membranous connections including membrane-like junctions (MLJ) and fiber-tube links (FTL) without triplet structures and cleft were found between neurons. The development frequencies of the two membranous conjunctions increased while those of the synaptic conjunctions decreased between the neurons from Otx1 knock-out mice in comparison with those between the neurons from normal mice. These results suggested that the neuroanatomical basis of Otx1 knock-out epilepsy is the combination of the decreased synaptic conjunctions and the increased membranous conjunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’Rourke NA, Weiler NC, Micheva KD, Smith SJ (2012) Deep molecular diversity of mammalian synapses: why it matters and how to measure it. Nat Rev Neurosci 13(6):365–379

    PubMed  PubMed Central  Google Scholar 

  2. Heine M (2012) Surface traffic in synaptic membranes. Adv Exp Med Biol 970:197–219

    Article  CAS  PubMed  Google Scholar 

  3. Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1(1): a002576. doi: 10.1101/cshperspect.a002576

  4. Eugenin EA, Basilio D, Sáez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MV, Berman JW (2012) The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 7(3):499–518

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moshkov DA, Mukhtasimova NF, Pavlik LL, Tiras NR, Pakhotina ID (1998) In vitro long-term potentiation of electrotonic responses of golden fish Mauthner cells is accompanied by ultrastructural changes at afferent mixed synapses. Neuroscience 87(3):591–605

    Article  CAS  PubMed  Google Scholar 

  6. Narendran R, Martinez D (2008) Cocaine abuse and sensitization of striatal dopamine transmission: a critical review of the preclinical and clinical imaging literature. Synapse 62(11):851–869

    Article  CAS  PubMed  Google Scholar 

  7. Sjostrand FS (1958) Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res 2(1):122–170

    Article  CAS  PubMed  Google Scholar 

  8. Hartmann JF (1954) Electron microscopy of motor nerve cells following section of axones. Anat Rec 118(1):19–33

  9. Winlow W (1990) Chemical synapses. In: Winlow W Neuronal Communications. Manchester University Press, New York, pp 53–81

    Google Scholar 

  10. Bennett WV (2000) Electrical synapses, a personal perspective (or history). Brain Res Brain Rev 32(1):16–28

    Article  CAS  Google Scholar 

  11. Makowski L, Caspar DLD, Philips WC, Goodenough DA (1977) Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol 74(2):629–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He B, Wu JP, Kirk TB, Carrino JA, Xiang C, Xu J (2014) High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential. Arthritis Res Ther 16(2):205. doi:10.1186/ar4506

    Article  PubMed  PubMed Central  Google Scholar 

  13. Winter PW, Chandris P, Fischer RS, Wu Y, Waterman CM, Shroff H (2015) Incoherent structured illumination improves optical sectioning and contrast in multiphoton super-resolution microscopy. Opt Express 23(4):5327–5334. doi:10.1364/OE.23.005327

    Article  PubMed  PubMed Central  Google Scholar 

  14. Binnig G, Quate CF, Gerber C (1986) Atomic force microscopy. Phys Rev Lett 56(9):930–933

    Article  PubMed  Google Scholar 

  15. Skorkina MY, Fedorova MZ, Muravyov AV, Sladkova EA (2012) The use of nanomechanic sensor for studies of morphofunctional properties of lymphocytes from healthy donors and patients with chronic lymphoblastic leukemia. Bull ExpBiol Med 154(1):163–166

    Article  CAS  Google Scholar 

  16. Rebelo LM, de Sousa JS, Mendes Filho J, Radmacher M (2013) Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Nanotechnology 24(5):055–102

    Article  CAS  Google Scholar 

  17. Shinozaki Y, Kikkawa Y, Sato S, Fukuoka T, Watanabe T, Yoshida S et al (2013) Enzymatic degradation of polyester films by a cutinase-like enzyme from Pseudozyma antarctica: surface plasmon resonance and atomic force microscopy study. Appl Microbiol Biotechnol 97(19):8591–8598

    Article  CAS  PubMed  Google Scholar 

  18. Spedden E, White JD, Naumova EN, Kaplan DL, Staii C (2012) Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J 103(5):868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clark CG, Sun Z, Meininger GA, Potts TL (2013) Atomic force microscopy to characterize binding properties of α7-containing nicotinic acetylcholine receptors on NK1-expressing medullary respiratory neurons. Exp Physio l98(2):415–424

    Article  CAS  Google Scholar 

  20. Magdesian MH, Sanchez FS, Lopez M, Thostrup P, Durisic N, Belkaid W et al (2012) Atomic force microscopy reveals important differences in axonal resistance to injury. Biophys J 103(3):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maciaszek JL, Soh H, Walikonis RS, Tzingounis AV, Lykotrafitis G (2012) Topography of native SK channels revealed by force nanoscopy in living neurons. J Neurosci 32(33):11435–11440

    Article  CAS  PubMed  Google Scholar 

  22. Amemiya Y, Kawano K, Matsusaki M, Akashi M, Nakamura N, Nakamura C (2012) Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells. Biochem Biophys Res Commun 420(3):662–665

    Article  CAS  PubMed  Google Scholar 

  23. Lee W, Parpura V (2012) Dissociated cell culture for testing effects of carbon nanotubes on neuronal growth. Methods MolBiol 846:261–276

    CAS  Google Scholar 

  24. Kafi MA, Kim TH, Lee T, Choi JW (2011) Cell chip with nano-scale peptide layer to detect dopamine secretion from neuronal cells. J Nanosci Nanotechnol 11(8):7086–7090

    Article  CAS  PubMed  Google Scholar 

  25. Jia X, Gharibyan AL, Öhman A, Liu Y, Olofsson A, Morozova-Roche LA (2011) Neuroprotective and nootropic drug noopept rescues α-synuclein amyloid cytotoxicity. J MolBiol 414(5):699–712. doi:10.1016/j.jmb.2011.09.044

    Article  CAS  Google Scholar 

  26. Schneider SW, Pagel P, Rotsch C, Danker T, Oberleithner H, Radmacher M, Schwab A (2000) Volume dynamics in migrating epithelial cells measured with atomic force microscopy. Pflugers Arch 439(3):297–303

    Article  CAS  PubMed  Google Scholar 

  27. Lang T, Holroyd P, Riedel D, Henderson RM, Edwardson JM, Jahn R (2000) A cell-free system for regulated exocytosis in PC12 cells. J Cell Biol 148(2):317–324

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tojima T, Hatakeyama D, Yamane Y, Kawabata K, Ushiki T, Ogura S, Abe K, Ito E (1998) Comparative atomic force and scanning electron microscopy for fine structural images of nerve cells. Jpn J Appl Phys 37(6):3855–3859. doi:10.1143/JJAP.37.3855

    Article  CAS  Google Scholar 

  29. Tojima T, Yamane Y, Takagi H, Takeshita T, Sugiyama T, Haga H, Kawabata K, Ushiki T et al (2000) Three-dimensional characterization of interior structures of exocytotic apertures of nerve cells using atomic force microscopy. Neuroscience 101(2):471–481

    Article  CAS  PubMed  Google Scholar 

  30. Hand GM, Müller DJ, Nicholson BJ, Engel A, Sosinsky GE (2002) Isolation and characterization of gap junctions from tissue cultured cells. J MBlBiol 315(4):587–600

    Article  CAS  Google Scholar 

  31. Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7(4):348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin MM, Chen Z (2011) Role of gap junctions in epilepsy. Neurosci Bull Am Meteorol Soc 27(6):389–406

    Article  Google Scholar 

  33. Dere E, Zlomuzica A (2012) The role of gap junctions in the brain in health and disease. NeurosciBiobehav Rev 36(1):206–217. doi:10.1016/j.neubiorev.2011.05.015

    CAS  Google Scholar 

  34. Rouach N, Avignone E, Même W, Koulakoff A, Venance L, Blomstrand F, Giaume C (2002) Gap junctions and connexin expression in the normal and pathological central nervous system. Biol Cell 94(7–8):457–475

    Article  CAS  PubMed  Google Scholar 

  35. Nakase T, Naus CC (2004) Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta 1662(1–2):149–158

    Article  CAS  PubMed  Google Scholar 

  36. Peng YF, Wu JX, Yang H, Dong XQ, Zheng W, Song Z (2012) Expression of connexin 36 in central nervous system and its role in epileptic seizure. Chin Med J (Engl) 125(13):2365–2370

    CAS  Google Scholar 

  37. Carlen PL (2012) Curious and contradictory roles of glial connexins and pannexins in epilepsy. Brain Res 1487:54–60. doi:10.1016/j.brainres.2012.06.059

    Article  CAS  PubMed  Google Scholar 

  38. Davidson JO, Green CR, Nicholson LF, O’Carroll SJ, Fraser M, Bennet L, Gunn AJ (2012) Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann Neurol 71(1):121–132. doi:10.1002/ana.22654

    Article  CAS  PubMed  Google Scholar 

  39. Akbarpour B, Sayyah M, Babapour V, Mahdian R, Beheshti S, Kamyab AR (2012) Expression of connexin 30 and connexin 32 in hippocampus of rat during epileptogenesis in a kindling model of epilepsy. Neurosci Bull Am Meteorol Soc 28(6):729–736. doi:10.1007/s12264-012-1279-6

    Article  CAS  Google Scholar 

  40. Traub RD, Draguhn A, Whittington MA, Baldeweg T, Bibbig A, Buhl EH, Schmitz D (2002) Axonal gap junctions between principal neurons: a membranous source of network oscillations, and perhaps epileptogenesis. Rev Neurosci 13(1):1–30

    Article  PubMed  Google Scholar 

  41. Furshpan EJ (1964) “Electrical transmission” at an excitatory synapse in a vertebrate brain. Science 144(3620):878–880

    Article  CAS  PubMed  Google Scholar 

  42. Westerfield M, Frank E (1982) Specificity of electrical coupling among neurons innervating forelimb muscles of the adult bullfrog. J Neurophysiol 48(4):904–913

    CAS  PubMed  Google Scholar 

  43. Hucker WJ, Nikolski VP, Efimov IR (2005) Optical mapping of the atrioventricular junction. J Electrocardiol 38(4 Suppl):121–125

    Article  PubMed  Google Scholar 

  44. Hervé JC, Dhein S (2010) Peptides targeting gap junctional structures. Curr Pharm Des 16(28):3056–3070

    Article  PubMed  Google Scholar 

  45. Inserte J, Ruiz-Meana M, Rodríguez-Sinovas A, Barba I, Garcia-Dorado D (2011) Contribution of delayed intracellular pH recovery to ischemic postconditioning protection. Antioxid Redox Signal 14(5):923–939. doi:10.1089/ars.2010.3312

    Article  CAS  PubMed  Google Scholar 

  46. Houser CR, Zhang N, Peng Z, Huang CS , Cetina Y (2012) Neuroanatomical clues to altered neuronal activity in epilepsy: from ultrastructure to signaling pathways of dentate granule cells. Epilepsia 53(Suppl 1):67–77. doi:10.1111/j.1528-1167.2012.03477.x

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cipelletti B, Avanzini G, Vitellaro-Zuccarello L, Franceschetti S, Sancini G, Lavazza T, Acampora D, Simeone A et al (2002) Morphological organization of somatosensory cortex in Otx1(−/−) mice. Neuroscience 115(3):657–667

    Article  CAS  PubMed  Google Scholar 

  48. Zhang YF, Liu LX, Cao HT, Ou L, Qu J, Wang Y, Chen JG (2015) Otx1 promotes basal dendritic growth and regulates intrinsic electrophysiological and synaptic properties of layer V pyramidal neurons in mouse motor cortex. Neuroscience 285:139–154. doi:10.1016/j.neuroscience.2014.11.019, Epub 2014 Nov 20

    Article  CAS  PubMed  Google Scholar 

  49. Acampora D, Mazan S, Avantaggiato V, Barone P, Tuorto F, Lallemand Y, Brûlet P, Simeone A (1996) Epilepsy and brain abnormalities in mice lacking the Otx1 gene. Nat Genet 14(2):218–222

    Article  CAS  PubMed  Google Scholar 

  50. Guan XM, Deng YP (1999) Basic structures and usual special morphs of the synapses: In: Han JS Principles in Neuroscience. Beijing Medical University Press, Beijing, pp 150–156

    Google Scholar 

  51. Heitler WJ (1990) Electrical synapses. In: Winlow W Neuronal Communications. Machester, New York, pp 28–52

    Google Scholar 

  52. Rozental R, Giaume C, Spray DC (2000) Gap junctions in the nervous system. Brain Res Brain Res Rev 32(1):11–15

    Article  CAS  PubMed  Google Scholar 

  53. Jefferys JG (1995) Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. Physiol Rev 75(4):689–723

    CAS  PubMed  Google Scholar 

  54. Peracchia C (1973) Low resistance junction in crayfish, I. Two arrays of globules in junctional membranes. J Cell Biol 57(1):66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peracchia C (1973) Low resistance junction in crayfish. II. Structural details and further evidence for intercellular channels by freeze-fracture and negative staining. J Cell Biol 57(1):54–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nature Rev Neurosci 3(7):497–516

    Article  CAS  Google Scholar 

  57. Delcomyn F (1998) Cellular and molecular building blocks. In: Delcomyn F Foundation of Neurobiology. W.H. Freeman and Company, New York, pp 17–50

    Google Scholar 

  58. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopy study. J Anat 93:420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Levitan IB, Kaczmarek LK (1997) Signaling in the brain. In: Levitan IB and Kaczmarek LK. Oxford University Press, Oxford, pp 1–22

    Google Scholar 

  60. Gray EG, Pumphrey RJ (1958) Ultra-structure of the insect ear. Nature 181(4609):618

    Article  CAS  PubMed  Google Scholar 

  61. Hama K (1961) Some observations on the fine structure of the giant fibers of the gray fishes (with special reference to the submicroscopic organization of the synapses. Anat Rec 141:275–293

    Article  CAS  PubMed  Google Scholar 

  62. Hirth F, Therianos S, Loop T, Gehring WJ, Reichert H, Furukubo-Tokunaga K (1995) Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron 15(4):769–778

    Article  CAS  PubMed  Google Scholar 

  63. Telfeian AE, Connors BW (1998) Layer-specific pathways for the horizontal propagation of epileptiform discharges in neocortex. Epilepsia 39(7):700–708

    Article  CAS  PubMed  Google Scholar 

  64. Weimann JM, Zhang YA, Levin ME, Devine WP, Brûlet P, McConnell SK (1999) Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24(4):819–831

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major Special Projection for Nanoscience of China (2010CB933904) and the Major Special Projection for New Drugs of China (2011ZX09102-001-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingge Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Jiang, S., Tang, X. et al. The Nanoscale Observation of the Three-Dimensional Structures of Neurosynapses, Membranous Conjunctions Between Cultured Hippocampal Neurons and Their Significance in the Development of Epilepsy. Mol Neurobiol 53, 7137–7157 (2016). https://doi.org/10.1007/s12035-015-9588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9588-1

Keywords

Navigation