Skip to main content
Log in

Evolution of GLUD2 Glutamate Dehydrogenase Allows Expression in Human Cortical Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human hGDH2 arose via duplication in the apes and driven by positive selection acquired enhanced catalytic ability under conditions inhibitory to its precursor hGDH1 (common to all mammals). To explore the biological advantage provided by the novel enzyme, we studied, by immunohistochemistry (IHC) and immunofluorescence (IF), hGDH1 and hGDH2 expression in the human brain. Studies on human cortical tissue using anti-hGDH1-specific antibody revealed that hGDH1 was expressed in glial cells (astrocytes, oligodendrocytes, and oligodendrocyte precursors) with neurons being devoid of hGDH1 staining. In contrast, an hGDH2-specific antiserum labeled both astrocytes and neurons. Specifically, hGDH2 immunoreactivity was found in the cytoplasm of large neuronal cells within coarse structures resembling mitochondria. These were distributed either in the perikaryon or in the cell periphery. Double immunofluorescence (IF) suggested that the latter represented hGDH2-labeled mitochondria of presynaptic nerve terminals. Hence, hGDH2 evolution bestowed large human neurons with enhanced glutamate metabolizing capacity, thus strengthening cortical excitatory transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conrad B, Antonarakis SE (2007) Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet 8:17–35

    Article  CAS  PubMed  Google Scholar 

  2. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  CAS  PubMed  Google Scholar 

  3. Bliss TV, Collingsridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  4. Schunzel G, Wolf G (1982) Topographic and quantitative characteristics of glutamate dehydrogenase of the hippocampus formation during the postnatal development of the rat brain. Comparative studies on succinate and alpha-glycerophosphate dehydrogenase with special reference to putatively glutamatergic structures. Acta Histochem 71:145–151

    Article  CAS  PubMed  Google Scholar 

  5. Rothe F, Wolf G, Schunzel G (1990) Immunohistochemical demonstration of glutamate dehydrogenase in the postnatally developing rat hippocampal formation and cerebellar cortex: comparison to activity staining. Neuroscience 39:419–429

    Article  CAS  PubMed  Google Scholar 

  6. Shashidharan P et al (1994) Novel human glutamate dehydrogenase expressed in neural and testicular tissues and encoded by an X-linked intronless gene. J Biol Chem 269:16971–16976

    CAS  PubMed  Google Scholar 

  7. Burki F, Kaessmann H (2004) Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Gen 36:1061–1063

    Article  CAS  Google Scholar 

  8. Plaitakis A, Latsoudis H, Spanaki C (2011) The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 59:495–509

    Article  CAS  PubMed  Google Scholar 

  9. Varki A (2004) How to make an ape brain. Nat Genet 36:1034–1036

    Article  CAS  PubMed  Google Scholar 

  10. McKenna MC, Sonennewald U, Huang X, Stevenson J, Zielke HR (1996) Glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    Article  CAS  PubMed  Google Scholar 

  11. Zaganas I, Plaitakis A (2002) Single amino acid substitution (G456A) in the vicinity of the GTP binding domain of human housekeeping glutamate dehydrogenase markedly attenuates GTP inhibition and abolishes the cooperative behavior of the enzyme. J Biol Chem 277:26422–26428

    Article  CAS  PubMed  Google Scholar 

  12. Kanavouras K, Mastorodemos V, Borompokas N, Spanaki C, Plaitakis A (2007) Properties and molecular evolution of human GLUD2 (neural and testicular tissue-specific) glutamate dehydrogenase. J Neurosci Res 85:1101–1109

    Article  CAS  PubMed  Google Scholar 

  13. Rosso L, Marques AC, Reichert AS, Kaessmann H (2008) Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection. PLoS Genet 4:e1000150

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aoki C, Milner TA, Berger SB, Sheu KF, Blass JP, Pickel VM (1987) Glial glutamate dehydrogenase: ultrastructural localization and regional distribution in relation to the mitochondrial enzyme, cytochrome oxidase. J Neurosci Res 18:305–318

    Article  CAS  PubMed  Google Scholar 

  15. McKenna MC, Stevenson JH, Huang X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241

    Article  CAS  PubMed  Google Scholar 

  16. Spanaki C, Zaganas I, Kleopa KA, Plaitakis A (2010) Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells. J Biol Chem 285:16748–16756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spanaki C, Plaitakis A (2012) The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res 21:117–127

    Article  CAS  PubMed  Google Scholar 

  18. Zaganas I, Spanaki C, Plaitakis A (2012) Expression of human GLUD2 glutamate dehydrogenase in human tissues: functional implications. Neurochem Int 61:455–462

    Article  CAS  PubMed  Google Scholar 

  19. Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A (2015) Expression of human GLUD1 and GLUD2 glutamate dehydrogenases in steroid producing tissues. Mol Cell Endocrinol. doi:10.1016/j.mce.2015.07.020

    PubMed  Google Scholar 

  20. Spanaki C, Kotzamani D, Petraki Z, Drakos E, Plaitakis A (2014) Heterogeneous cellular distribution of glutamate dehydrogenase in brain and in non-neural tissues. Neurochem Res 39:500–515

    Article  CAS  PubMed  Google Scholar 

  21. Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS (2004) Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47:346–357

    Article  PubMed  Google Scholar 

  22. di Prisco G, Banay-Schwartz M, Strecker HJ (1968) Glutamate dehydrogenase in nuclear and mitochondrial fractions of rat liver. Biochem Biophys Res Commun 33:606–612

    Article  PubMed  Google Scholar 

  23. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2015) Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416

    Article  CAS  PubMed  Google Scholar 

  24. Koch-Nolte F, Fischer S, Haag F, Ziegler M (2011) Compartmentation of NAD+-dependent signalling. FEBS Lett 585:1651–1656

    Article  CAS  PubMed  Google Scholar 

  25. Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N et al (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97

    Article  CAS  PubMed  Google Scholar 

  26. Purohit JS, Tomar RS, Panigrahi AK, Pandey SM, Singh D, Chaturvedi MM (2013) Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro. Biochimie 95:1999–2009

    Article  CAS  PubMed  Google Scholar 

  27. Mandal P, Chauhan S, Tomar RS (2014) H3 clipping activity of glutamate dehydrogenase is regulated by stefin B and chromatin structure. FEBS J 281:5292–5308

    Article  CAS  PubMed  Google Scholar 

  28. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    Article  PubMed  PubMed Central  Google Scholar 

  29. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  30. Azarias G et al (2011) Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J Neurosci 31:3550–3559

    Article  CAS  PubMed  Google Scholar 

  31. Olstad E, Olsen GM, Qu H, Sonnewald U (2007) Pyruvate recycling in cultured neurons from cerebellum. J Neurosci Res 85:3318–3325

    Article  CAS  PubMed  Google Scholar 

  32. Bao X et al (2009) Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29:13929–13944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verstreken P et al (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–378

    Article  CAS  PubMed  Google Scholar 

  34. Cavallaro S et al (1997) Late memory-related genes in the hippocampus revealed by RNA fingerprinting. Proc Natl Acad Sci U S A 94:9669–9673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaller B, Mekle R, Xin L, Kunz N, Gruetter R (2013) Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 tesla. J Neurosci Res 91:1076–1083

    Article  CAS  PubMed  Google Scholar 

  36. Shepherd GM, Harris KM (1998) Three-dimensional structure and composition of CA3→CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 18:8300–8310

    CAS  PubMed  Google Scholar 

  37. Hara Y et al (2014) Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc Natl Acad Sci U S A 111:486–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union (European Social Fund—ESF) and Greek national funds through the operational program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: THALIS—UOA, title of grant “Mechanisms of pathogenesis of Parkinson’s disease”, grant code 70/3/11679.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleanthe Spanaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spanaki, C., Kotzamani, D., Kleopa, K. et al. Evolution of GLUD2 Glutamate Dehydrogenase Allows Expression in Human Cortical Neurons. Mol Neurobiol 53, 5140–5148 (2016). https://doi.org/10.1007/s12035-015-9429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9429-2

Keywords

Navigation