Skip to main content

Advertisement

Log in

Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson’s Disease Susceptibility

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A rare TREM2 missense mutation (rs75932628-T) was reported to confer a significant Alzheimer’s disease (AD) risk. A recent study indicated no evidence of the involvement of this variant in Parkinson’s disease (PD). Here, we used the genetic and expression data to reinvestigate the potential association between TREM2 and PD susceptibility. In stage 1, using 10 independent studies (N = 89,157; 8787 cases and 80,370 controls), we conducted a subgroup meta-analysis. We identified a significant association between rs75932628 and PD (P = 3.10E-03, odds ratio (OR) = 3.88, 95 % confidence interval (CI) 1.58–9.54) in No-Northern Europe subgroup, and significantly increased PD risks (P = 0.01 for Mann–Whitney test) in No-Northern Europe subgroup than in Northern Europe subgroup. In stage 2, we used the summary results from a large-scale PD genome-wide association study (GWAS; N = 108,990; 13,708 cases and 95,282 controls) to search for other TREM2 variants contributing to PD susceptibility. We identified 14 single-nucleotide polymorphisms (SNPs) associated with PD within 50-kb upstream and downstream range of TREM2. In stage 3, using two brain expression GWAS datasets (N = 773), we identified 6 of the 14 SNPs regulating increased expression of TREM2. In stage 4, using the whole human genome microarray data (N = 50), we further identified significantly increased expression of TREM2 in PD cases compared with controls in human prefrontal cortex. In summary, convergent genetic and expression datasets demonstrate that TREM2 is a potent risk factor for PD and may be a therapeutic target in PD and other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J et al (2013) Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  Google Scholar 

  2. Lill CM, Rengmark A, Pihlstrom L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T et al (2015) The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimers Dement

  3. Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C et al (2013) TREM2 in neurodegeneration: evidence for association of the p.R47h variant with frontotemporal dementia and Parkinson's disease. Mol Neurodegener 8:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benitez BA, Cruchaga C (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1567–1568

    PubMed  PubMed Central  Google Scholar 

  5. Jonsson T, Stefansson K (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1568–1569

    CAS  PubMed  Google Scholar 

  6. Rothwell PM (2005) Treating individuals 2. Subgroup analysis in randomised controlled trials: importance, indications, and interpretation. Lancet 365:176–186

    Article  PubMed  Google Scholar 

  7. Liu G, Li F, Zhang S, Jiang Y, Ma G, Shang H, Liu J, Feng R et al. Analyzing large-scale samples confirms the association between the abca7 rs3764650 polymorphism and alzheimer's disease susceptibility. Mol Neurobiol 2014

  8. Chen H, Wu G, Jiang Y, Feng R, Liao M, Zhang L, Ma G, Chen Z et al (2014) Analyzing 54,936 samples supports the association between cd2ap rs9349407 polymorphism and Alzheimer's disease susceptibility. Mol Neurobiol

  9. Liu G, Zhang S, Cai Z, Ma G, Zhang L, Jiang Y, Feng R, Liao M et al (2013) PICALM gene rs3851179 polymorphism contributes to Alzheimer's disease in an Asian population. Neuromolecular Med 15:384–388

    Article  CAS  PubMed  Google Scholar 

  10. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  11. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54:1046–1055

    Article  CAS  PubMed  Google Scholar 

  13. Song F, Khan KS, Dinnes J, Sutton AJ (2002) Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol 31:88–95

    Article  PubMed  Google Scholar 

  14. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet 46:989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, Schjeide LM, Meissner E et al (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson's disease genetics: the PDGene database. PLoS Genet 8:e1002548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou F, Chai HS, Younkin CS, Allen M, Crook J, Pankratz VS, Carrasquillo MM, Rowley CN et al (2012) Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet 8:e1002707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dumitriu A, Latourelle JC, Hadzi TC, Pankratz N, Garza D, Miller JP, Vance JM, Foroud T et al (2012) Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation. PLoS Genet 8:e1002794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Benitez BA, Jin SC, Guerreiro R, Graham R, Lord J, Harold D, Sims R, Lambert JC et al (2014) Missense variant in TREML2 protects against Alzheimer's disease. Neurobiol Aging 35:1510 e1519–1526

    Article  Google Scholar 

  19. Replogle JM, Chan G, White CC, Raj T, Winn PA, Evans DA, Sperling RA, Chibnik LB et al (2015) A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann Neurol 77:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roussos P, Katsel P, Fam P, Tan W, Purohit DP, Haroutunian V (2014) The triggering receptor expressed on myeloid cells 2 (TREM2) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer's dementia. Alzheimers Dement

  22. Lue LF, Schmitz CT, Serrano G, Sue LI, Beach TG, Walker DG (2014) Trem2 protein expression changes correlate with Alzheimer's disease neurodegenerative pathologies in post-mortem temporal cortices. Brain Pathol

  23. Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL, Jiang T (2014) Increased expression of TREM2 in peripheral blood of Alzheimer's disease patients. J Alzheimers Dis 38:497–501

    CAS  PubMed  Google Scholar 

  24. Strobel S, Grunblatt E, Riederer P, Heinsen H, Arzberger T, Al-Sarraj S, Troakes C, Ferrer I et al (2015) Changes in the expression of genes related to neuroinflammation over the course of sporadic Alzheimer's disease progression: CX3CL1, TREM2, and PPARgamma. J Neural Transm

  25. Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J et al (2014) TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71:449–453

    Article  PubMed  PubMed Central  Google Scholar 

  26. Feng SJ, Nie K, Gan R, Huang J, Zhang YW, Wang LM, Zhao JH, Tang HM et al (1780) Triggering receptor expressed on myeloid cells 2 variants are rare in Parkinson's disease in a Han Chinese cohort. Neurobiol Aging 2014(35):e1711–1782

    Google Scholar 

  27. Chen Y, Chen X, Guo X, Song W, Cao B, Wei Q, Ou R, Zhao B et al (2015) Assessment of TREM2 rs75932628 association with Parkinson's disease and multiple system atrophy in a Chinese population. Neurol Sci

  28. Lin WY, Lou XY, Gao G, Liu N (2014) Rare variant association testing by adaptive combination of p-values. PLoS One 9:e85728

    Article  PubMed  PubMed Central  Google Scholar 

  29. Clarke GM, Rivas MA, Morris AP (2013) A flexible approach for the analysis of rare variants allowing for a mixture of effects on binary or quantitative traits. PLoS Genet 9:e1003694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Nature Science Foundation of China (Grant No. 81300945 and 81471294).

Conflict of interest

The authors reported no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keshen Li or Jiafeng Liu.

Additional information

Guiyou Liu and Yongquan Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Liu, Y., Jiang, Q. et al. Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson’s Disease Susceptibility. Mol Neurobiol 53, 4931–4938 (2016). https://doi.org/10.1007/s12035-015-9416-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9416-7

Keywords

Navigation