Skip to main content

Advertisement

Log in

Long-Term Dietary Alpha-Linolenic Acid Supplement Alleviates Cognitive Impairment Correlate with Activating Hippocampal CREB Signaling in Natural Aging Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alpha-linolenic acid (ALA) is a major precursor of the essential n-3 polyunsaturated fatty acid (PUFA), whose deficiency alters the structure and function of membranes and induces cerebral dysfunctions. The major purpose of this study was to investigate the protective effect of prolonged ALA intake on cognitive function during natural aging. Female Sprague–Dawley rats aged 6 months were chronically treated with ALA and/or lard per day for 12 months. Regular diet-treated rats, both young and old (4 and 18 months old, respectively) served as controls. Rats fed on regular diet during aging showed memory deficits in Morris water maze, which were further exacerbated by lard intake. However, supplementation with ALA for 12 months dose-dependently improved the performance in spatial working memory tasks. Memory performance correlated well with the activation of cAMP response element-binding protein (CREB) and increases in both levels of brain-derived neurotrophic factor (BDNF) and its specific receptor tyrosine kinase B (TrkB) phosphorylation in the hippocampus. Further study identified that hippocampal extracellular signal-related kinase (ERK) and Akt rather than calcium calmodulin kinase IV (CaMKIV) and protein kinase A (PKA), the upstream signalings of CREB, were also activated by ALA supplement. Moreover, memory improvement was accompanied with alterations of hippocampal synaptic structure and number, suggestive of enhancement in synaptic plasticity. Together, these results suggest that long-term dietary intake of ALA enhances CREB/BDNF/TrkB pathway through the activation of ERK and Akt signalings in hippocampus, which contributes to its ameliorative effects on cognitive deficits in natural aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ALA:

α-Linolenic acid

ANOVA:

Analyses of variance

BDNF:

Brain-derived neurotrophic factor

CaMKIV:

Calcium calmodulin kinase IV

CNS:

Central nervous system

CREB:

Cyclic AMP response element-binding protein

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ERK:

Extracellular signal-regulated kinase

FAME:

Fatty acid methyl esters

FO:

Flaxseed oil

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HFD:

High-fat diet

LSD:

Least significant difference

LTM:

Long-term memory

LTP:

Long-term potentiation

MAPK:

Mitogenactivated protein kinase

MUFA:

Monounsaturated fatty acid

MWM:

Morris water maze

PI-3K:

Phosphoinositide-3 kinase

PKA:

Protein kinase A

PKB:

Protein kinase B

PSD:

Postsynaptic density

PUFAs:

Polyunsaturated fatty acids

RT-PCR:

Reverse transcription-polymerase chain reaction

S:

Synapse

SC:

Synaptic cleft

SD:

Standard deviation

SFA:

Saturated fatty acid

SV:

Synaptic vesicle

TrkB:

Tyrosine kinase B

UI:

Unsaturated index

References

  1. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yeoman M, Scutt G, Faragher R (2012) Insights into CNS ageing from animal models of senescence. Nat Rev Neurosci 13(6):435–445

    Article  CAS  PubMed  Google Scholar 

  3. Kidd PM (2008) Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev 13(2):85–115

    PubMed  Google Scholar 

  4. Izquierdo I, Bevilaqua LR, Rossato JI et al (2008) The molecular cascades of long-term potentiation underlie memory consolidation of one-trial avoidance in the CA1 region of the dorsal hippocampus, but not in the basolateral amygdala or the neocortex. Neurotox Res 14(2–3):273–294

    Article  PubMed  Google Scholar 

  5. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136

    Article  CAS  PubMed  Google Scholar 

  6. VanGuilder HD, Farley JA, Yan H et al (2011) Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 43(1):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Carlezonjr W, Duman R, Nestler E (2005) The many faces of CREB. Trends Neurosci 28(8):436–445

    Article  Google Scholar 

  9. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33(5):230–240

    Article  CAS  PubMed  Google Scholar 

  10. Josselyn SA, Shi C, Carlezon WJ et al (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21(7):2404–2412

    CAS  PubMed  Google Scholar 

  11. Brightwell JJ, Smith CA, Countryman RA et al (2005) Hippocampal overexpression of mutant creb blocks long-term, but not short-term memory for a socially transmitted food preference. Learn Mem 12(1):12–17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yin JC, Del VM, Zhou H et al (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81(1):107–115

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Rong S, Xie B et al (2010) Memory impairment in cognitively impaired aged rats associated with decreased hippocampal CREB phosphorylation: reversal by procyanidins extracted from the lotus seedpod. J Gerontol A: Biol Med Sci 65A(9):933–940

    Article  CAS  Google Scholar 

  14. Song J, Yu J, Tan L (2014) Brain-derived neurotrophic factor in Alzheimer’s disease: risk, mechanisms, and therapy. Mol Neurobiol: 1–17

  15. Morris KA, Gold PE (2013) Epinephrine and glucose modulate training-related CREB phosphorylation in old rats: relationships to age-related memory impairments. Exp Gerontol 48(2):115–127

    Article  CAS  PubMed  Google Scholar 

  16. Leite MR, Marcondes SM, de Freitas ML et al (2014) Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats. Exp Gerontol 53:67–73

    Article  CAS  PubMed  Google Scholar 

  17. Zhao H, Li Q, Pei X et al (2009) Long-term ginsenoside administration prevents memory impairment in aged C57BL/6J mice by up-regulating the synaptic plasticity-related proteins in hippocampus. Behav Brain Res 201(2):311–317

    Article  CAS  PubMed  Google Scholar 

  18. Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19(7):1699–1707

    Article  PubMed  Google Scholar 

  19. Molteni R, Barnard RJ, Ying Z et al (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112(4):803–814

    Article  CAS  PubMed  Google Scholar 

  20. Porquet D, Casadesús G, Bayod S et al (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age 35(5):1851–1865

    Article  CAS  PubMed  Google Scholar 

  21. Blondeau N, Nguemeni C, Debruyne DN et al (2009) Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 34(12):2548–2559

    Article  CAS  PubMed  Google Scholar 

  22. Feng Z, Zou X, Jia H et al (2012) Maternal docosahexaenoic acid feeding protects against impairment of learning and memory and oxidative stress in prenatally stressed rats: possible role of neuronal mitochondria metabolism. Antioxid Redox Signal 16(3):275–289

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Hu X, Yang W et al (2010) Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic-ischemic brain injury through anti-inflammatory actions. Stroke 41(10):2341–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kidd PM (2007) Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev 12(3):207–227

    PubMed  Google Scholar 

  25. Coblijn GB (2008) Flaxseed oil and fish-oil capsule consumption alters human red blood cell n – 3 fatty acid composition: a multiple-dosing trial comparing 2 sources of n-3 fatty acid. Am J Clin Nutr 88(3):801–809

    Google Scholar 

  26. Su H (2010) Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem 21(5):364–373

    Article  CAS  PubMed  Google Scholar 

  27. Rao JS, Ertley RN, Lee HJ et al (2007) n-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol Psychiatry 12(1):36–46

    Article  CAS  PubMed  Google Scholar 

  28. Williams CM, El MM, Vauzour D et al (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45(3):295–305

    Article  CAS  PubMed  Google Scholar 

  29. Xu J (2009) Procyanidins extracted from the lotus seedpod ameliorate scopolamine-induced memory impairment in mice. Phytother Res 23(12):1742–1747

    Article  CAS  PubMed  Google Scholar 

  30. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  31. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  33. Yehuda S, Rabinovitz S, Carasso RL et al (2002) The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging 23(5):843–853

    Article  CAS  PubMed  Google Scholar 

  34. Logan AC (2003) Neurobehavioral aspects of omega-3 fatty acids: possible mechanisms and therapeutic value in major depression. Altern Med Rev 8(4):410–425

    PubMed  Google Scholar 

  35. Hashimoto M, Tanabe Y, Fujii Y et al (2005) Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. J Nutr 135(3):549–555

    CAS  PubMed  Google Scholar 

  36. Kim KB, Nam YA, Kim HS et al (2014) Alpha-linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol 70:163–178

    Article  CAS  PubMed  Google Scholar 

  37. Pepe M, Recchia FA (2010) Omega-3 fatty acids for the prevention of myocardial infarction and arrhythmias. Cardiovasc Ther 28(4):e1–e4

    Article  CAS  PubMed  Google Scholar 

  38. Barcelo-Coblijn G, Murphy EJ (2009) Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48(6):355–374

    Article  CAS  PubMed  Google Scholar 

  39. Ledesma MD, Martin MG, Dotti CG (2012) Lipid changes in the aged brain: effect on synaptic function and neuronal survival. Prog Lipid Res 51(1):23–35

    Article  CAS  PubMed  Google Scholar 

  40. Petursdottir AL, Farr SA, Morley JE et al (2008) Effect of dietary n-3 polyunsaturated fatty acids on brain lipid fatty acid composition, learning ability, and memory of senescence-accelerated mouse. J Gerontol A Biol Sci Med Sci 63(11):1153–1160

    Article  PubMed  Google Scholar 

  41. Bekinschtein P, Cammarota M, Izquierdo I et al (2007) Reviews: BDNF and memory formation and storage. Neuroscientist 14(2):147–156

    Article  PubMed  Google Scholar 

  42. Simon W, Hapfelmeier G, Kochs E et al (2001) Isoflurane blocks synaptic plasticity in the mouse hippocampus. Anesthesiology 94(6):1058–1065

    Article  CAS  PubMed  Google Scholar 

  43. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623

    Article  CAS  PubMed  Google Scholar 

  44. Eckert GP, Franke C, Noldner M et al (2010) Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacol Res 61(3):234–241

    Article  CAS  PubMed  Google Scholar 

  45. Stackman RW, Blasberg ME, Langan CJ et al (1997) Stability of spatial working memory across the estrous cycle of Long-Evans rats. Neurobiol Learn Mem 67(2):167–171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mengjing Xu (research fellow), Yilin Jin (research fellow), and Shuke Nie (doctoral student) for helping raise the animals.

Role of Funding Source

This work was supported by the National Natural Science Foundation of China (NSFC-31171681 and NSFC-81472978) and the earmarked fund for Modern Agro-industry Technology Research System (CARS-17), China. The funding source had no further role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the paper for publication.

Contributors

Author Hui Gao designed and wrote a first draft of the paper. Peipei Yan and Hao Huang carried out all the experiments. Shun Zhang and Fenghong Huang undertook the statistical analysis and created the figures. Taoping Sun, Sijing Chen, and Qianchun Deng performed dissection procedures. Qingde Huang managed the literature searches. Keqiang Ye assisted with the preparation and proof-reading of the manuscript. Jiqu Xu and Liegang Liu contributed to the design of the study, reviewed the manuscript, and contributed to the final version. All authors contributed to and have approved the final manuscript.

Conflict of Interest

The authors can identify no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqu Xu or Liegang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Yan, P., Zhang, S. et al. Long-Term Dietary Alpha-Linolenic Acid Supplement Alleviates Cognitive Impairment Correlate with Activating Hippocampal CREB Signaling in Natural Aging Rats. Mol Neurobiol 53, 4772–4786 (2016). https://doi.org/10.1007/s12035-015-9393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9393-x

Keywords

Navigation